• Title/Summary/Keyword: 서비스 기반 어플리케이션

Search Result 750, Processing Time 0.024 seconds

Implementation of Efficient Mobile Monitoring System of the GreenHouse Environment Data (온실 환경 데이터의 효과적인 모바일 모니터링 시스템 구현)

  • Seo, Jung-Hee;Park, Hung-Bog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.572-579
    • /
    • 2009
  • A monitoring system needs many parameters to increase devices for monitoring data and to support various services. In particular, monitoring the status of a device in a wireless mobile environment has a difficulty in displaying multi data in a limited screen size, and transfer of the status data of a device into a network is largely related with network traffic. The research aims at designing a control board that collects data in order to effectively manage a greenhouse environment system. Also, the research tries to appropriately operate devices, environment data monitoring, and the control of each device by realizing a multiplexed interface based on a web. Thus, in the case in which a distributed client was a computer, monitoring and control were obtained with a web browser through the Lab VIEW web server of a server or local control module in order to effectively monitor and control according to the status of a user. In the case in which a client was a PDA, application of a wireless mobile considering the scale and data processing capacity of a displayer was connected. As a result of the research, we could confirm a satisfactory outcome from the viewpoint of a human-centered design by supplying adaptability and mobility according to the environment of a user.

Password-Based Authentication Protocol for Remote Access using Public Key Cryptography (공개키 암호 기법을 이용한 패스워드 기반의 원거리 사용자 인증 프로토콜)

  • 최은정;김찬오;송주석
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.1
    • /
    • pp.75-81
    • /
    • 2003
  • User authentication, including confidentiality, integrity over untrusted networks, is an important part of security for systems that allow remote access. Using human-memorable Password for remote user authentication is not easy due to the low entropy of the password, which constrained by the memory of the user. This paper presents a new password authentication and key agreement protocol suitable for authenticating users and exchanging keys over an insecure channel. The new protocol resists the dictionary attack and offers perfect forward secrecy, which means that revealing the password to an attacher does not help him obtain the session keys of past sessions against future compromises. Additionally user passwords are stored in a form that is not plaintext-equivalent to the password itself, so an attacker who captures the password database cannot use it directly to compromise security and gain immediate access to the server. It does not have to resort to a PKI or trusted third party such as a key server or arbitrator So no keys and certificates stored on the users computer. Further desirable properties are to minimize setup time by keeping the number of flows and the computation time. This is very useful in application which secure password authentication is required such as home banking through web, SSL, SET, IPSEC, telnet, ftp, and user mobile situation.

Fault Detection and Reuse of Self-Adaptive Module (자가 적응 모듈의 오류 탐지와 재사용)

  • Lee, Joon-Hoon;Lee, Hee-Won;Park, Jeong-Min;Jung, Jin-Su;Lee, Eun-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.247-252
    • /
    • 2007
  • 오늘날 컴퓨팅 환경은 점차 복잡해지고 있으며, 복잡한 환경을 관리하는 이 점차 중요해 지고 있다. 이러한 관리를 위해 어플리케이션의 내부 구조를 드러내지 않은 상태에서 환경에 적응하는 자가치유에 관한 연구가 중요한 이슈가 되고 있다. 우리의 이전 연구에서는 자가 적응 모듈의 성능 향상을 위해 스위치를 사용하여 컴포넌트의 동작 유무를 결정하였다. 그러나 바이러스와 같은 외부 상황에 의해 자가 적응 모듈이 정상적으로 동작하지 않을 수 있으며 다수의 파일을 전송할 때 스위치가 꺼진 컴포넌트들은 메모리와 같은 리소스를 낭비한다. 본 연구에서는 이전 연구인 성능 개선 자가 적응 모듈에서 발생할 수 있는 문제점을 해결하기 위한 방법을 제안한다. 1) 컴포넌트의 동작 여부를 결정하는 스위치를 확인하여 비정상 상태인 컴포넌트를 찾아 치유를 하고, 2) 현재 단계에서 사용하지 않는 컴포넌트를 다른 작업에서 재사용한다. 이러한 제안 방법론을 통해 파일 전송이 않은 상황에서도 전체 컴포넌트의 수를 줄일 수 있으며 자가 적응 제어 모듈을 안정적으로 작동할 수 있도록 한다. 본 논문에서는 명가를 위하여 비디오 회의 시스템 내의 파일 전송 모듈에 제안 방법론을 적용하여 이전 연구의 모듈과 제안 방법론을 적용한 모듈이 미리 정한 상황들에서 정상적으로 적응할 수 있는지를 비교한다. 또한 파일 전송이 많은 상황에서 제안 방법론을 적용하였을 때 이전 연구 방법론과의 컴포넌트 수를 비교한다. 이를 통해 이전 연구의 자가 적응 모듈의 비정상 상태를 찾아낼 수 있었고, 둘 이상의 파일 전송이 이루어 질 때 컴포넌트의 재사용을 통해 리소스의 사용을 줄일 수 있었다.위해 잡음과 그림자 영역을 제거한다. 잡음과 그림자 영역을 제거하면 구멍이 발생하거나 실루엣이 손상되는 문제가 발생한다. 손상된 정보는 근접한 픽셀이 유사하지 않을 때 낮은 비용을 할당하는 에너지 함수의 스무드(smooth) 항에 의해 에지 정보를 기반으로 채워진다. 결론적으로 제안된 방법은 스무드 항과 대략적으로 설정된 데이터 항으로 구성된 에너지 함수를 그래프 컷으로 전역적으로 최소화함으로써 더욱 정확하게 목적이 되는 영역을 추출할 수 있다.능적으로 우수한 기호성, 즉석에서 먹을 수 있는 간편성, 장기저장에 의한 식품 산패, 오염 및 변패 미생물의 생육 등이 발생하지 않는 우수한 생선가공, 저장방법, 저가 생선류의 부가가치 상승 등 여러 유익한 결과를 얻을 수 있는 효과적인 가공방법을 증명하였다.의 평균섭취량에도 미치지 못하는 매우 저조한 영양상태를 보여 경제력, 육체적 활동 및 건강상태 등이 매우 열악한 이들 집단에 대한 질 좋은 영양서비스의 제공이 국가적 차원에서 시급히 재고되어야 할 것이다. 연구대상자 특히 배달급식 대상자의 경우 모집의 어려움으로 인해 적은 수의 연구대상자의 결과를 보고한 것은 본 연구의 제한점이라 할 수 있다 따라서 본 연구결과를 바탕으로 좀 더 많은 대상자를 대상으로 한 조사 연구가 계속 이루어져 가정배달급식 프로그램의 개선을 위한 유용한 자료로 축적되어야 할 것이다.상범주로 회복함을 알수 있었고 실험결과 항암제 투여후 3 일째 피판 형성한 군에서 피판치유가 늦어진 것으로 관찰되어 인체에서 항암 투여후 수술시기는 인체면역계가 회복하는 시기를 3주이상 경과후 적어도 4주째 수술시기를 정하는 것이 유리하리라 생각되

  • PDF

Development of a Server-independent System to Identify and Communicate Fire Information and Location Tracking of Evacuees (화재정보 확인과 대피자 위치추적을 위한 서버 독립형 시스템 개발)

  • Lee, Chijoo;Lee, Taekwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.677-687
    • /
    • 2021
  • If a fire breaks out in a building, occupants can evacuate more rapidly if they are able to identify the location of the fire, the exits, and themselves. This study derives the requirements of system development, such as distance non-limitation, a non-additional device, a non-centralized server system, and low power for an emergency, to identify information about the fire and the location of evacuees. The objective is to receive and transmit information and reduce the time and effort of the database for location tracking. Accordingly, this study develops a server-independent system that collects information related to a building fire and an evacuee's location and provides information to the evacuee on their mobile device. The system is composed of a transmitting unit to disseminate fire location information and a mobile device application to determine the locations of the fire and the evacuee. The developed system can contribute to reducing the damage to humans because evacuees can identify the location of the fire, exits, and themselves regardless of the impaired server system by fire, the interruption of power source, and the evacuee's location. Furthermore, this study proposes a theoretical basis for reducing the effort required for database construction of the k-nearest neighbor fingerprint.

A Study on the Smart(智慧) Museum in China: on the case of Dunhuang Museum, The Palace Museum, China Arts and Crafts Master Museum (중국 스마트(智慧) 박물관에 관한 연구: 둔황 박물관, 고궁 박물관, 중국공예미술대사 박물관 사례를 중심으로)

  • BO KYONG KIM
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.69-74
    • /
    • 2023
  • Smart museums based on the growth of online exhibition can be seen as in line with the movement of the 4th Industrial Revolution. By combining art and technologies, they enable viewers to experience culture and art. This study examined the cases of the Dunhuang Museum, the Palace Museum, and the China Arts and Crafts Master Museum to assess or identify how China is leading by accepting the technology of the fourth industry and applying the technology. In common, Chinese smart museums are widely used for collecting enviromental data, establishing integrated digital applications, and preserving collections, services, management, and exhibitions through VR, and AR. Through the case of the Chinese Smart Museum, this study identified the online exhibition as a space that exists in another dimension rather than an image replica with excellent operational utility. Therefore, online exhibitions are the best medium to expand the space, and viewers can explorethe museum's exhibition room and engage with all the contents of the museum without visiting the museum in person. Through the online exhibition of smart museums, visitors and viewers can be transformed into more active cultural consumers and develop collective capabilities.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

Assessing and Mapping the Aesthetic Value of Bukhansan National Park Using Geotagged Images (지오태그 이미지를 활용한 북한산국립공원의 경관미 평가 및 맵핑)

  • Kim, Jee-Young;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.4
    • /
    • pp.64-73
    • /
    • 2021
  • The purpose of this study is to present a method to assess the landscape aesthetic value of Bukhansan National Park using geotagged images that have been shared on social media sites. The method presented in this study consisted mainly of collecting geotagged image data, identifying landscape images, and analyzing the cumulative visibility by applying a target probability index. Ramblr is an application that supports outdoor activities with many users in Korea, from which a total of 110,954 geotagged images for Bukhansan National Park were collected and used to assess the landscape aesthetics. The collected geotagged images were interpreted using the Google Vision API, and were subsequently were divided into 11 landscape image types and 9 non-landscape image types through cluster analysis. As a result of analyzing the landscape types of Bukhansan National Park based on the extracted landscape images, landscape types related to topographical characteristics, such as peaks and mountain ranges, accounted for the largest portion, and forest landscapes, foliage landscapes, and waterscapes were also commonly found as major landscape types. In the derived landscape aesthetic value map, the higher the elevation and slope, the higher the overall landscape aesthetic value, according to the proportion and characteristics of these major landscape types. However, high landscape aesthetic values were also confirmed in some areas of lowlands with gentle slopes. In addition, the Bukhansan area was evaluated to have higher landscape aesthetics than the Dobongsan area. Despite the high elevation and slope, the Dobongsan area had a relatively low landscape aesthetic value. This shows that the aesthetic value of the landscape is strongly related not only to the physical environment but also to the recreational activities of visitors who are viewing the scenery. In this way, the landscape aesthetics assessment using the cumulative visibility of geotagged images is expected to be useful for planning and managing the landscape of Bukhansan National Park in the future, through allowing the geographical understanding of the landscape values based on people's perceptions and the identification of the regional deviations.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.