• 제목/요약/키워드: 서멀마네킹

검색결과 4건 처리시간 0.017초

10℃ 환경에서 기류가 겨울철 패딩 의류의 한 벌 보온력에 미치는 영향 -인체 착용 및 서멀마네킹 측정 비교- (Effects of Air Velocity on the Thermal Insulation of Winter-padded Clothing Ensembles at 10℃ Air Temperature -Comparison of Human Wear Trials with a Thermal Manikin-)

  • 백윤정;조가영;홍유진;이주영
    • 한국의류학회지
    • /
    • 제45권4호
    • /
    • pp.703-713
    • /
    • 2021
  • This study was to investigate the thermal insulation of clothing ensembles, including padded jackets with two different filling types. Thermal insulation of the ensemble was measured using a thermal manikin in four conditions (10℃, 30% RH and 20℃, 50% RH with an air velocity of less than 0.15 m·s-1 and 1.5 m·s-1). Ten males participated at 10℃ and 30% RH with an air velocity of less than 0.15 m·s-1 and 1.5 m·s-1. The results showed that the polyester ensemble was warmer than a goose down ensemble in 0.15 m·s-1 conditions and the goose down ensemble had greater thermal insulation than the polyester ensemble at an air velocity of 1.5 m·s-1. Thermal insulation was reduced 5-7% when temperature decreased 10℃ and reduced 40-50% when air velocity reached 1.5 m·s-1 for both ensembles. Thermal insulation of the ensemble in human trials decreased more than a thermal manikin at 10℃, 30% RH with an air velocity of 1.5 m·s-1. Lower temperatures and human trials were effective in identifying the properties of the thermal insulation by filling types even though there were restrictions on the general application because of two types of a clothing ensemble.

발한 마네킹을 이용한 보호복용 언더웨어의 동적(Transient) 열류량 평가 (Transient Heat Flux Evaluation of Underwear for Protective Clothing using Sweating Manikin)

  • 박혜준;김현정;홍경희
    • 한국의류학회지
    • /
    • 제32권1호
    • /
    • pp.157-165
    • /
    • 2008
  • Transient thermal response of five types of underwear(cotton jersey, wool jersey, nylon jersey, cotton mesh and polyester mesh) for a protective coverall is evaluated using a sweating thermal manikin. Experimental protocol for transient thermal response of the sweating thermal manikin was also proposed. As results, it was found that steady state thermal response from sweating thermal manikin was not sensitive enough to evaluate thermal comfort of the experimental garments. However, when half time is used as an index of the heat flux change in transient thermal response, difference was found among underwear materials. Half time of cotton was the shortest and heat transfer of cotton was the fastest followed by polyester mesh, cotton jersey, nylon jersey and wool jersey. Dynamic thermal response of wool underwear was quite different from that of cotton underwear. Wool shows quite less heat flow at the initial stage, however, moisture permeability of wool was higher than cotton at the later stage. It was difficult to distinguish surface temperature difference visually using thermogram taken right before the completion of dry and wet test in steady state thermal response.

보온 재료에 따른 구명 조끼 별 단열성능의 비교 실험 및 해석 (Comparative Studies of Thermal Insulation Performance of Life Vests by Numerical Analysis and Experiment)

  • 김성찬;이경훈;황세윤;장호상;이장현
    • 한국항해항만학회지
    • /
    • 제40권1호
    • /
    • pp.7-14
    • /
    • 2016
  • 구명 조끼는 익수자의 부력을 유지시키는 기능을 가지며, 낮은 해수 온도에서 저체온증에 빠지는 시간을 단축 시킬 수 있는 역할을 할 수 있다. 본 논문은 서멀 마네킹 실험과 수치적 방법을 적용하여 단열성능을 향상 시키기 위해서 개발된 팽창형 구명 조끼와 폼형 구명 조끼의 단열성능 및 저체온증 방지 효과를 평가하였다. 단열성능 평가를 위해서 서멀마네킨을 이용하여 열유속 및 열저항을 계측하였으며, 본 연구에서 제시된 구명 조끼의 단열성능을 기존의 제품과 비교하여 검토하였다. 또한 저체온증에 빠지는 정도를 상대적으로 파악하기 위해서 유한요소해석을 이용하여 구명 조끼의 종류에 따른 체온 저감 시간을 예측하고 이를 비교 평가하였다. 저체온증 예측모델은 Pennes의 신체 열전달 해석 모델을 기반으로 작성되었으며, 실험으로부터 계측한 열저항 값을 이용하여 대류 열전달 조건을 환산하여 계산되었다. 그 결과 본 연구에서 단열성능을 향상시키기 위해서 제시된 하는 구명 조끼가 기존 제품에 비해 단열성능이 우수하게 평가됨을 확인하였다.

단일의복의 보온력 정량화와 영향 요인 (Quantification of Thermal Insulation by Clothing Items and Analysis of Influencing Factors)

  • 백윤정;황수경;이효현;박준희;김도희;이주영
    • 한국의류학회지
    • /
    • 제42권1호
    • /
    • pp.172-182
    • /
    • 2018
  • The purpose of the present study was to quantify the thermal insulation of garments by item and examine factors influencing clothing insulation. A total of 769 garments in clo unit were collected and classified into 12 categories: blouses/shirts (95 items, BS), T-shirts/sweaters (62 items, TS), vest (23 items, VT), cardigans (23 items, CD), jackets/coats (75 items, JC), sport outerwear (including padding jackets)(48 items, SO), trousers (23 items, TR), skirts (56 items, SK), dresses (28 items, DS), underwear (150 items, UW), sleepwear (50 items, SW), and personal protective clothing (59 items, PPC). The results showed that clothing insulation was $0.21{\pm}0.01clo$ for the BS, $0.22{\pm}0.01clo$ for TS, $0.12{\pm}0.00clo$ for VT, $0.23{\pm}0.02clo$ for CD, $0.40{\pm}0.02clo$ for JC, $0.49{\pm}0.03clo$ for SO, $0.21{\pm}0.01clo$ for TR, $0.18{\pm}0.01clo$ for SK, $0.34{\pm}0.03clo$ for DS, $0.09{\pm}0.01clo$ for UW, $0.42{\pm}0.03clo$ for SW, and $0.56{\pm}0.03clo$ for PPC (p<.001). The most influential factors among the seven factors for thermal insulation of garments were clothing weight and covering area; however, the explanatory powers of two factors differed according to clothing categories. The covering area had more significant impact on clothing insulation in cardigans, jackets/coats, trousers, and dresses than clothing weight. Covering areas and clothing weight were the most influential factors in the following categories: blouses/shirt, T-shirts/sweaters, skirts, sleepwear and personal protective clothing. The garment weight was the most important factor for thermal insulation for the sport outerwear.