DOI QR코드

DOI QR Code

Quantification of Thermal Insulation by Clothing Items and Analysis of Influencing Factors

단일의복의 보온력 정량화와 영향 요인

  • Baek, Yoon Jeong (Research Institute of Human Ecology, Seoul National University) ;
  • Hwang, Soo Kyung (Research Institute of Advanced Materials, Seoul National University) ;
  • Lee, Hyo Hyun (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University) ;
  • Park, Joonhee (Research Institute of Human Ecology, Seoul National University) ;
  • Kim, Do-Hee (Research Institute of Human Ecology, Seoul National University) ;
  • Lee, Joo-Young (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University/Research Institute of Human Ecology, Seoul National University)
  • 백윤정 (서울대학교 생활과학연구소) ;
  • 황수경 (서울대학교 신소재공동연구소) ;
  • 이효현 (서울대학교 의류학과) ;
  • 박준희 (서울대학교 생활과학연구소) ;
  • 김도희 (서울대학교 생활과학연구소) ;
  • 이주영 (서울대학교 의류학과/서울대학교 생활과학연구소)
  • Received : 2017.12.07
  • Accepted : 2017.12.30
  • Published : 2018.02.28

Abstract

The purpose of the present study was to quantify the thermal insulation of garments by item and examine factors influencing clothing insulation. A total of 769 garments in clo unit were collected and classified into 12 categories: blouses/shirts (95 items, BS), T-shirts/sweaters (62 items, TS), vest (23 items, VT), cardigans (23 items, CD), jackets/coats (75 items, JC), sport outerwear (including padding jackets)(48 items, SO), trousers (23 items, TR), skirts (56 items, SK), dresses (28 items, DS), underwear (150 items, UW), sleepwear (50 items, SW), and personal protective clothing (59 items, PPC). The results showed that clothing insulation was $0.21{\pm}0.01clo$ for the BS, $0.22{\pm}0.01clo$ for TS, $0.12{\pm}0.00clo$ for VT, $0.23{\pm}0.02clo$ for CD, $0.40{\pm}0.02clo$ for JC, $0.49{\pm}0.03clo$ for SO, $0.21{\pm}0.01clo$ for TR, $0.18{\pm}0.01clo$ for SK, $0.34{\pm}0.03clo$ for DS, $0.09{\pm}0.01clo$ for UW, $0.42{\pm}0.03clo$ for SW, and $0.56{\pm}0.03clo$ for PPC (p<.001). The most influential factors among the seven factors for thermal insulation of garments were clothing weight and covering area; however, the explanatory powers of two factors differed according to clothing categories. The covering area had more significant impact on clothing insulation in cardigans, jackets/coats, trousers, and dresses than clothing weight. Covering areas and clothing weight were the most influential factors in the following categories: blouses/shirt, T-shirts/sweaters, skirts, sleepwear and personal protective clothing. The garment weight was the most important factor for thermal insulation for the sport outerwear.

Keywords

References

  1. Bouskill, L. M., Havenith, G., Kuklane, K., Parsons, K. C., & Withey, W. R. (2002). Relationship between clothing ventilation and thermal insulation. AIHA Journal, 63(3), 262-268. doi:10.1080/15428110208984712
  2. Choi, H. S. (1989). A study on the thermal properties of skirts. Journal of the Korean Society of Clothing and Textiles, 13(4), 388-399.
  3. Choi, J. W., & Kim, M. J. (2011). Clothing and health. Paju: Gyomun Publishers.
  4. Choi, J. W., & Ko, E. S. (2007). Relationship between thermal insulation and the combinations of Korean Women's clothing by season-Using a thermal manikin-. Journal of the Korean Society of Clothing and Textiles, 31(6), 966-973. doi:10.5850/JKSCT.2007.31.6.966
  5. Choi, J. W., & Lee, H. H. (2009). The relationship between weight of single garments and thermal insulation with a thermal manikin. Journal of the Korean Society of Clothing and Textiles, 33(2), 173-186. doi:10.5850/JKSCT.2009.33.2.173
  6. Griefahn, B., & Forsthoff, A. (1997). Comparison between estimated worn clothing insulation and required calculated clothing insulation in moderately cold environments ($0^{\circ}C{\leq}t_a{\leq}15^{\circ}C$). Applied Ergonomics, 28(4), 295-299. doi:10.1016/S003-6870(96)00064-6
  7. Havenith, G., Kuklane, K., Fan, J., Hodder, S. G., Ouzzahra, Y., Lundgren, K., Au, Y., & Loveday, D. L. (2015). A database of static clothing thermal insulation and vapor permeability values of non-western ensembles for use in ASHRAE Standard 55, ISO 7730, and ISO 9920. ASHRAE Transaction, 121(1), 197-215.
  8. Holmer, I. (1985). Heat exchange and thermal insulation compared in woolen and nylon garments during wear trials. Textile Research Journal, 55(9), 511-518. doi:10.1177/004051758505500901
  9. Holmer, I. (2004). Thermal manikin history and applications. European Journal of Applied Physiology, 92(6), 614-618. doi:10.1007/s00421-004-1135-0
  10. Huang, J. (2012). Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin. The Annals of Occupational Hygiene, 56(6), 728-735. doi:10.1093/annhyg/mer118
  11. International Organization for Standardization. (2004a). ISO 7933: 2004, Ergonomics of the thermal environment - Analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: Author.
  12. International Organization for Standardization. (2004b). ISO 15831:2004, Clothing -- Physiological effects -- Measurement of thermal insulation by means of a thermal manikin. Geneva: Author.
  13. International Organization for Standardization. (2007). ISO 9920: 2007, Ergonomics of the thermal environment - Estimation of thermal insulation and water vapour resistance of a clothing ensemble. Geneva: Author.
  14. Jeong, Y. O., & Choi, J. W. (1984). An experimental study on the thermal insulation of the linin fabrics. Journal of the Korean Society of Clothing and Textiles, 8(1), 1-11.
  15. Ke, Y., Havenith, G., Zhang, X., Li, X., & Li, J. (2014). Effects of wind and clothing apertures on local clothing ventilation rates and thermal insulation. Textile Research Journal, 84(9), 941-952. doi:10.1177/0040517513512399
  16. Kim, Y. B., Jang, W., Kim, K., Kim, S., Baek, Y. J., & Lee, J. Y. (2015). Comparison of thermal insulations between on air-cell pack embedded jacket and down jackets. Journal of the Korean Society of Clothing and Textiles, 39(1), 55-62. doi:10.5850/JKSCT.2015.39.1.55
  17. Kuklane, K., Gao, C., Wang, F., & Holmer, I. (2012). Parallel and serial methods of calculating thermal insulation in European manikin standards. International Journal of Occupational Safety and Ergonomics, 18(2), 171-179. doi:10.1080/10803548.2012.11076926
  18. Kwon, J. (2004). A study on the relationship between environmental temperature and wearing clothing insulation. Unpublished master's thesis, Seoul National University, Seoul.
  19. Lee, H., Eom, R., Jeong, Y., & Lee, Y. (2014). Thermal insulation analysis of mans's vest in terms of fit and armhole depth. Journal of Korean Society of Living Environment System, 21(2), 145-157.
  20. Lee, J. Y., Ko, E. S., Lee, H. H., Kim, J. Y., & Choi, J. W. (2011). Validation of clothing insulation estimated by global and serial methods. International Journal of Clothing Science and Technology, 23(2/3), 184-198. doi:10.1108/09556221111107360
  21. Lee, Y. J., & Lee, S. W. (1989). The effects of Parka on subject wear sensation as to thermal resistance. Journal of the Korean Society of Clothing and Textiles, 13(3), 295-303.
  22. Lotens, W. A., & Havenith, G. (1991). Calculation of clothing insulation and vapour resistance. Ergonomics, 34(2), 233-254. doi:10.1080/00140139108967309
  23. Lu, Y., Wang, F., Wan, X., Song, G., Zhang, C., & Shi, W. (2015). Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation. International Journal of Biometeorology, 59(10), 1487-1498. doi:10.1007/s00484-015-0959-0
  24. McCullough, E. A., & Kenney, W. L. (2003). Thermal insulation and evaporative resistance of football uniforms. Medicine and Science in Sports and Exercise, 35(5), 832-837. doi:10.1249/01.MSS.0000064998.48130.22
  25. Nelson, D. A., Curlee, J. S., Curran, A. R., Ziriax, J. M., & Mason, P. A. (2005). Determining localized garment insulation values from manikin studies: Computational method and results. European Journal of Applied Physiology, 95(5-6), 464-473. doi:10.1007/s00421-005-0033-4
  26. Oliveira, A. V. M., Gaspar, A. R., & Quintela, D. A. (2008). Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: Comparative analysis of the calculation methods. European Journal of Applied Physiology, 104(4), 679-688. doi: 10.1007/s00421-008-0824-5
  27. Oliveira, A. V. M., Gaspar, A. R., & Quintela, D. A. (2011). Dynamic clothing insulation. Measurements with a thermal manikin operating under the thermal comfort regulation mode. Applied Ergonomics, 42(6), 890-899. doi:10.1016/j.apergo.2011.02.005
  28. Park, J. H., & Choi, J. W. (2008). The relationship between clothing microclimate and clothing thermal insulation. Journal of Korean Society of Living Environment System, 15 (4), 677-685.
  29. Son, W. K., & Baek, Y. J. (1999). Effects of garment types in thermal insualtion using a thermal manikin. Journal of the Korean Society of Clothing and Textiles, 23(8), 1110-1118.
  30. Son, W. K., & Choi, J. W. (1999a). The effects of textiles materials and wearing type on the thermal insualtion value. Journal of the Korean Society of Clothing and Textiles, 23 (8), 1098-1109.
  31. Son, W. K., & Choi, J. W. (1999b). The effects of textiles for thermal insualtion value using a thermal manikin. Journal of the Korean Home Economics Association, 37(12), 141-151.
  32. Song, M., & Kwon, M. (2008a). A study on the insulation of thermal clothing under dynamic air condition. Journal of the Korean Society of Costume, 58(9), 29-37.
  33. Song, M., & Kwon, M. (2008b). A study on the thermal characteristics of comfortable heat-retaining winter clothing. Journal of the Korean Society of Costume, 58(6), 24-34.
  34. Suh, M. A. (1977). The length of skirt and the warmth retentivity. Journal of the Korean Society of Clothing and Textiles, 1(2), 59-64.
  35. Sung, S. K., & Kim, Y. H. (1994). Effects of structural properties on the thermal properties of quilting underwears. Journal of Korean Society of Living Environment System, 2(1), 33-41.
  36. Vogt, J. J., Meyer, J. P., Candas, V., Libert, J. P., & Sagot, J. C. (1983). Pumping effects on thermal insulation of clothing worn by human subjects. Ergonomics, 26(10), 963-974. doi:10.1080/00140138308963425
  37. Wang, F., Shi, W., Lu, Y., Song, G., Rossi, R., M., & Anaheim, S. (2016). Effects of moisture content and clothing fit on clothing apparent 'wet' thermal insulation: A thermal manikin study. Textile Research Journal, 86(1), 57-63. doi: 10.1177/0040517515580527
  38. Watkins, S. M. (1998). 의복과 환경 (개정판) [Clothing and environment (Rev. ed.)] (H. S. Choi, Trans.). Seoul: Ewha Womans University Press. (Original work published 1995)
  39. Yigit, A. (1999). Combining thermal comfort models. ASHRAE Transactions, 105(1), 149-155.

Cited by

  1. Research trends on prevention of heat stroke using clothing: Focusing on practical research in Japan vol.56, pp.5, 2018, https://doi.org/10.6115/fer.2018.035