• Title/Summary/Keyword: 샷 전환 검출

Search Result 29, Processing Time 0.024 seconds

Effective Shot Boundary Detection Using Multiple Sliding Windows (다중 슬라이딩 윈도우들을 이용한 효과적인 샷 경계 검출 방법)

  • Min, Hyun-Seok;Jin, Sung-Ho;Ro, Yong-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.15-18
    • /
    • 2006
  • 비디오를 내용 별로 분할하기 위한 최소 단위는 비디오의 샷이다. 따라서 비디오 내용 정보를 분석함에 있어서 비디오의 샷 경계 검출은 필수적인 과정이다. 이러한 샷 전환 과정은 급격한 샷 전환 과정과 점진적인 샷 전환 과정으로 구분할 수 있다. 점진적인 샷 전환 과정의 경우 전환 과정이 여러 프레임들에 걸쳐 발생되는 관계로 점진적인 샷 전환 과정을 검출하기 위하여, 기존 샷 경계 검출 알고리즘은 일정 간격을 슬라이딩한 윈도우 프레임들 간의 차이를 비교하는 방식을 이용하였다. 기존 슬라이딩 윈도우 방법은 점전적인 샷 전환 과정을 검출하기 위하여 고정된 크기의 윈도우 하나만을 이용하였다. 이 경우, 슬라이딩 윈도우의 길이가 점진적인 샷 전환 과정에 비해 짧으면, 샷 전환을 검출하지 못 한다. 슬라이딩 윈도우의 길이가 샷의 길이보다 길면 샷을 점진적인 샷 전환으로 검출하는 오류가 발생된다. 상기 문제점을 개선하기 위하여 본 논문에서는 서로 다른 크기의 다수의 슬라이딩 윈도우들과 적응적 경계치를 적용한 샷 경계 검출 방법을 제안한다.

  • PDF

The Shot Change Detection Using a Hybrid Clustering (하이브리드 클러스터링을 이용한 샷 전환 검출)

  • Lee, Ji-Hyun;Kang, Oh-Hyung;Na, Do-Won;Lee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.635-638
    • /
    • 2005
  • The purpose of video segmentation is to segment video sequence into shots where each shot represents a sequence of frames having the same contents, and then select key frames from each shot for indexing. There are two types of shot changes, abrupt and gradual. The major problem of shot change detection lies on the difficulty of specifying the correct threshold, which determines the performance of shot change detection. As to the clustering approach, the right number of clusters is hard to be found. Different clustering may lead to completely different results. In this thesis, we propose a video segmentation method using a color-X$^2$ intensity histogram-based fuzzy c-means clustering algorithm.

  • PDF

An automatic fault correction technique in the scene change detection by the key frame extraction includes multiple features (다중 특징을 포함한 키 프레임 추출에 의한 장면 전환 검출 오류 자동 수정 기법)

  • Yoon, Ju-Hyun;Youm, Sung-Ju;Kim, Woo-Saeng
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.187-190
    • /
    • 2002
  • 본 논문은 다중 특징을 포함한 대표 키 프레임을 추출을 통해 장면 전환 검출 시 발생할 수 있는 검출 오류를 자동으로 인식하고 수정함으로써 빠르고 신뢰성 있는 장면 분할을 수행하는 새로운 기법을 제안한다. 이를 위해 개선된 고속 장면 전환 검출 기법에 의해 샷을 분할 하고 분할 된 샷으로부터 대표 키 프레임과 그것에 포함된 후보 키 프레임들의 다중 정보를 포함시킴으로써 샷의 전반에 대한 정보를 보다 잘 표현할 수 있도록 한다. 그리고 다중정보를 포함한 대표 키 프레임의 비교를 통해 샷 검출 오류를 자동으로 인식하여 적절히 수정할 수 있는 기법을 제안하며 실세계 동영상 데이터를 사용한 실험을 통해서 제안하는 기법에 의해 효율적으로 샷이 분할 될 수 있음을 보인다.

  • PDF

Improving Histogram Scene Change Detection Method Using Motion Vector (움직임 벡터를 이용한 히스토그램 장면 전환 검출 기법의 개선)

  • 한영욱;정성일;김성재;이시영;김승호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.410-412
    • /
    • 1999
  • 히스토그램 장면 전환 검출(histogram scene change detection) 기법은 입력 영상 내에 카메라 동작(camera operation)이 발생한 부분을 컷(cut)으로 나누는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 프레임 사이의 움직임 벡터를 측정하여 카메라 동작이 일어났는지를 판단하고, 이를 이용하여 잘못된 컷의 인식을 막는다. 카메라 동작이 발생하는 샷의 경제는 컷이 될 수 없으므로, 이외의 샷에 대해 컬러 히스토그램 교집합(color histogram intersection)을 구해서 장면 전환 여부를 판단한다. 제안된 기법은 기존의 히스토그램 장면 전환 검출 기법보다 프리시젼(Precision) 면에서 성능 향상을 보였다.

  • PDF

Video Abstracting Using Scene Change Detection and Clustering (장면전환 검출과 클러스터링을 이용한 비디오 개요 추출)

  • 신성윤;강일고;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.583-587
    • /
    • 2002
  • 비디오를 시청하기 위하여 원하는 비디오를 선택하고자 할 때 사용자들은 비디오의 전반적인 내용을 알 수 있는 방법이 많지 않다. 따라서 비디오 시청을 원하는 사용자들에게 비디오의 전반적인 개요를 보여주어 선택 할 수 있는 방법이 요구된다. 본 논문에서는 전환 검출 방법과 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 $\times$2 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 히스토그램의 차이값을 측정과 샷 병합 알고리즘을 통해 수행하도록 한다.

  • PDF

Video Abstracting Using Scene Change Detection and Shot Clustering for Construction of Efficient Video Database (대용량 비디오 데이터베이스 구축을 위하여 장면전환 검출과 샷 클러스터링을 이용한 비디오 개요 추출)

  • Shin Seong-Yoon;Pyo Seong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.111-119
    • /
    • 2006
  • Video viewers can not understand enough entire video contents because most video is long length data of large capacity. This paper propose efficient scene change detection and video abstracting using new shot clustering to solve this problem. Scene change detection is extracted by method that was merged color histogram with $\chi2$ histogram. Clustering is performed by similarity measure using difference of local histogram and new shot merge algorithm. Furthermore, experimental result is represented by using Real TV broadcast program.

  • PDF

Video Abstracting Using Scene Change Detection and Sho Clustering for Construction of Efficient Video Database (비디오 데이터베이스 구축을 위하여 장면전환 검출과 샷 클러스터링을 이용한 비디오 개요 추출)

  • 표성배
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.75-82
    • /
    • 2002
  • Video viewers can not understand enough entire video contents because most video is long length data of large capacity. This paper Propose efficient scene change detection and video abstracting using new shot clustering to solve this problem. Scene change detection is extracted by method that was merged color histogram with χ2 histogram. Clustering is performed by similarity measure using difference of local histogram and new shot merge algorithm. Furthermore, experimental result is represented by using Real TV broadcast program.

  • PDF

Shot Motion Classification Using Partial Decoding of INTRA Picture in Compressed Video (압축비디오에서 인트라픽쳐 부분 복호화를 이용한 샷 움직임 분류)

  • Kim, Kang-Wook;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.858-865
    • /
    • 2011
  • In order to allow the user to efficiently browse, select, and retrieve a desired video part without having to deal directly with GBytes of compressed data, classification of shot motion characteristic has to be carried out as a preparation for such user interaction. The organization of video information for video database requires segmentation of a video into its constituent shots and their subsequent characterization in terms of content and camera movement in shot. In order to classify shot motion, it is a conventional way to use element of motion vector. However, there is a limit to estimate global camera motion because the way that uses motion vectors only represents local movement. For shot classification in terms of motion information, we propose a new scheme consisting of partial decoding of INTRA pictures and comparing the x, y displacement vector curve between the decoded I-frame and next P-frame in compressed video data.

Video Abstracting Using Clustering (클러스터링을 이용한 비디오 개요 추출)

  • 임정훈;국나영;곽순영;강일고;이양원
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.73-76
    • /
    • 2002
  • 비디오 시청을 원하는 사용자들은 비디오의 전반적인 개요를 짧은 시간에 시청하여 보고싶은 비디오를 쉽게 선택하기를 바란다. 본 논문에서는 전환 검출 방법과 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 χ2 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 히스토그램의 차이값을 측정과 샷 병합 알고리즘을 통해 수행하도록 한다.

  • PDF

Video Abstracting Construction of Efficient Video Database (대용량 비디오 데이터베이스 구축을 위한 비디오 개요 추출)

  • Shin Seong-Yoon;Pyo Seong-Bae;Rhee Yang-Won
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.255-264
    • /
    • 2006
  • Video viewers can not understand enough entire video contents because most video is long length data of large capacity. This paper propose efficient scene change detection and video abstracting using new shot clustering to solve this problem. Scene change detection is extracted by method that was merged color histogram with ${\chi}^2$ histogram. Clustering is performed by similarity measure using difference of local histogram and new shot merge algorithm. Furthermore, experimental result is represented by using Real TV broadcast program.

  • PDF