• Title/Summary/Keyword: 생활폐기물고형연료

Search Result 13, Processing Time 0.022 seconds

An Economic Evaluation of MSW RDF production plant (생활폐기물고형연료(RDF) 제조기술 경제성 평가)

  • Choi, Yeonseok;Choi, Hangseok;Kim, Seockjoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.158.1-158.1
    • /
    • 2010
  • 국내 최초의 생활폐기물고형연료(RDF) 생산플랜트인 원주시 RDF플랜트의 2009년도 운영실적을 정리하여 폐기물 처리단가를 분석하였으며 에너지 생산 효과도 분석하였다. 실적분석에 사용된 자료는 원주 RDF플랜트 위탁운영업체가 운영비를 청구 및 정산하기 위해서 원주시에 상시 측정 및 보고하는 항목으로서, 내용은 트럭으로 플랜트에 반입되는 폐기물 전체량, RDF생산 전체량, 불순물 매립 전체량, 건조 및 탈취용 연료사용 전체량, 전기사용 전체량 등이다. 2009년도 원주시 RDF플랜트에 반입된 폐기물 량은 총 17,504톤이었고, RDF를 총 7,044톤 생산하였으며, 4,120톤의 불연물을 선별하였다. 1년간 사용한 건조 및 탈취용 연료는 총 596,268 리터였으며 연료인 부생유의 가격은 리터 당 평균 864.6원이었다. 사용한 전기량은 총 2,435,397 kWh였고, 이 중에서 성형공정에 사용된 전기량은 총 사용량의 19%였다. 이상의 기록자료들을 분석해 본 결과, 폐기물 1톤을 처리하는데 전기 비용이 14,334원이었고, 연료비가 29,452원이었다. 여기에 폐기물 1톤당 불연물 매립비 6,573원과 위탁인건비를 합하면 폐기물 1톤당 처리비용은 약 116,573원으로 나타났다. 현재 원주시 RDF는 톤당 25,000원에 판매되고 있으므로 이 비용을 감안하면 폐기물 1톤당 처리비용은 105,298원으로 산출되었다. 현재 알려진 유사 규모의 소각로 운영비가 폐기물 1톤당 136,736원인데, 이것은 RDF기술보다 31,438원/톤-폐기물 정도 처리비용이 비싸다. 따라서 100톤 이하 규모의 폐기물처리시설 설치를 할 경우에는 RDF 시설이 경제적으로 타당함을 나타낸다. 원주시 RDF플랜트의 물질수지를 분석해 본 결과, RDF생산 수율은 40.2%였으며 총 투입된 에너지는 8,0587 Gcal였다. 생산된 에너지 총량은 RDF발열량 4,500 kcal/kg으로 했을 때 31,699 Gcal로 나타났다. 투입대비 생산에너지 비율은 25.4%로 계산되었고, 전기의 발전효율을 40%로 감안했을 경우에는 35.3%로 계산되었다. 성형하는데 사용되는 총 에너지는 전체 투입에너지의 4.9%로 나타났고, 비용으로는 폐기물 1톤당 2,723원 이었다.

  • PDF

A Study on Fire Risk & Countermeasure of RDF(Refuse Derived Fuel) (생활폐기물 고형연료제품의 화재위험과 안전대책에 관한 연구)

  • Jeong, Ui-Su;Gang, Gyeong-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.04a
    • /
    • pp.17-25
    • /
    • 2009
  • 세계의 모든 나라가 화석연료를 대체하는 태양광, 풍력 등의 그린에너지 기술개발에 주력하고 있으며, 한편으로는 에너지의 효율제고 및 재생을 위하여 폐기물로부터의 자원순환을 이룩하는 폐기에너지 회수에도 많은 노력을 기울이고 있다. 그 하나의 방편이 버려지는 쓰레기에서 에너지를 회수하는 고형재생연료인 RDF(생활폐기물 고형연료 제품, Refuse Derived Fuel) 생산이다. 우리나라에서는 유일하게 강원도 원주시에서 하루 80톤을 생산하고 있으며 아직은 기술도입 초기단계에 있는 가연성폐기물의 연료화 기술이다. RDF의 특성은 불연성 성분이 제거된 일반 가연물을 분쇄하여 압출성형 가공한 펠릿형상의 고체연료로서의 열적 특성이 우수하나 화재안전 측면에서는 제조 및 취급공정에서의 일반적인 가연물 화재위험성을 가지고 있고, 저장과정에서는 축열발열에 의한 자연발화 위험성이 상존하며, 저장형태, 특히 사이로의 경우 구조특성으로 인하여 화재진압도 쉽지않다. 본 논문에서는 일본의 RDF 화재사례를 중심으로 그 화재 위험 특성과 안전대책을 고찰하고자 한다.

  • PDF

Status of Technology development of RDF for municipal wastes in Korea (국내 생활폐기물 RDF 기술개발 동향)

  • Lee, Ha-Baik;Choi, Yeon-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.705-708
    • /
    • 2007
  • RDF means Refuse Derived Fuel, it is made pellets with combustible materials in municipal waste and RDF use a renewable energy instead with natural coal. RDF Technology is a essential one to treat municipal waste steadily and secure a energy source in Korea. Already RDF Technology commercialize in Japan, USA, Europe and there are many of RDF production plants and utilization facilities. The first RDF plant was constructed in Wonju Korea in October 2006 and is good operation. Government accelerate establishment of concerning laws and support to develop technology and spread RDF plants and utilization facilities.

  • PDF

A Study on Derived Solid Fuels Manufacture of Industrial wastes (산업단지 발생폐기물을 이용한 부존자원연료 제조 최적화에 관한 연구)

  • Ryu, Young-Bok;Kim, Yang-Do;Kang, Min-Su;Lee, Gang-Woo;Shon, Byung-Hyun;Lee, Man-Sig
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.675-677
    • /
    • 2009
  • 사업장 폐기물의 발생량은 생활폐기물 발생량의 2배 이상에 달하며, 그 성상은 생활폐기물에 비해 불균일하다. 보다 적극적인 폐기물에너지 생산방안을 마련하기 위해서는 불균일 성상의 폐기물에 대한 추가적인 연구가 필요한 실정이다. 본 연구는 지역별 가연성폐기물의 발생비율에 따른 고형연료 제조를 통해 사업장 폐기물의 고형연료제품 생산을 위한 가능성 및 기초자료를 제시하고자 한다.

  • PDF

An Economic Evaluation of MSW RDF Production Plant (생활폐기물 고형연료(RDF) 제조기술 경제성 평가)

  • Choi, Yeon-Seok;Choi, Hang-Seok;Kim, Seock-Joon
    • New & Renewable Energy
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • The waste treatment fee and energy production effect of Wonju city RDF plant, the first RDF manufacturing plant in Korea, were investigated in the study. All plant operation data, like total weight of received wastes, produced RDF and separated rejects in processes were fully recorded for mass balance calculation of the plant in 2009. Also all consumed oil and electricity were recorded for energy balance calculation. The results showed that the waste treatment fee not including the RDF sales price of 25,000 won/ton-RDF was 116,573 won/ton-MSW and it went down to 105,298 won when included the RDF price. Produced RDF was 40.2% of total received waste in weight. Three components analysis by mass balance calculation of total received waste showed that Wonju city's MSW was 32.4% of combustible, 37.5% of water and 30.1% of incombustible respectively. Energy effect was found that total amount of produced energy was about 4 times more than that of consumed energy.

A Study on the RDF fuel mixing with household and organic wastes (생활(生活)쓰레기 및 유기성폐기물(有機性廢棄物) 혼합(混合)에 따른 RDF 연료화(燃料化)에 관한 연구(硏究))

  • Ha, Sang-An;You, Mi-Young;Kim, Dong-Kyun;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.20 no.5
    • /
    • pp.52-57
    • /
    • 2011
  • This study was conducted to examine the possibilities to utilize the mixture of domestic and organic wastes from B-city as a fuel. All types of mixing ratio for uncarried waste, sludge cake, and food waste were found 10 generate heating value with 6,000 kcal/kg, and in case of sludge cake the concentration of toxic substance produced was found to be decreased as air-fuel ratio and temperature were increased. It was noted that toxic gases such as CO, NOx, and SOx were observed below concentration of emission standard, and temperature inside the incinerator was stabilized at 2 of air-fuel ratio and 800$^{\circ}C$. It was observed that a heating value of 6000 kcal/kg generated using RDF(Refuse Derived Fuel) was appropriate to utilize a fuel if a complete combustion was attained.

Development of Separation System with Rotating Rakes for Recovery of Film-based Plastics (기계식(機械式) 회전(回轉)레이크를 이용(利用)한 생활계(生活界) 폐기물(廢棄物) 필름류(類) 선별장치(選別裝置) 개발(開發)에 관(關)한 연구(硏究))

  • Lee, Byung-Sun;Na, Kyung-Duk;Han, Sang-Kuk;Choi, Woo-Zin;Park, Eun-Kyu
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.24-32
    • /
    • 2010
  • In the present work, a new separation system with rotating rakes has been developed to separate the film-based plastics from the recyclable materials, and environment assessment is also carried out during operation of the device. Capacity of the device was about 5.3 ton/hr at a rakes rotation speed of 26.0 rpm (the number of rakes in the 1st, 2nd and 3rd trials were 39, 52 and 48, respectively) and a belt conveyor speed of 38.5m/min, which satisfied the initial design capacity (5.0 ton/hr). Recovery ratio and purity of the plastic films were 92.6% and 96.5%, respectively at a rotation speed of 28 rpm. The levels of noise, vibration and particulate emission were below material standard regulatory limits. Plastic refused fuel (RPF) was also prepared with the recovered films. The calorific value and chlorine content of the prepared RPF were 9,740 kcal/kg and 0.18%, respectively which satisfy the first grade quality specification of the Korean RPF standard. As a result of this work, recovery of energy resources from the municipal solid waste is possible by adopting the developed separation device.

Effect of Waste Energy Recovery on SUDOKWON Landfill Gas Generation (폐기물 에너지화가 수도권매립지 매립가스 발생량에 미치는 영향)

  • Chun, Seung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.942-948
    • /
    • 2010
  • To predict the potential reduction of $CH_4$ by recovering several types of wastes as of reusable energy sources like RDF, the $CH_4$ emission for each type of waste from Landfill Site 3 of SUDOKWON Landfill was estimated for the period of 2017 to 2024. Without any recovering effort on types of wastes being disposed of at the Landfill, there are producing a total of $526{\times}10^6\;Nm^3$ of $CH_4$; municipal waste of $337{\times}10^6\;Nm^3$, construction waste of $178{\times}10^6\;Nm^3$, and facility waste of $11{\times}10^6\;Nm^3$. It composed of 41.5% to that observed from 2002 to 2009. With properly retrieved by MT(Mechanical Treatment), it released a total of $158{\times}10^6\;Nm^3$ $CH_4$; $127{\times}10^6\;Nm^3$, $28{\times}10^6\;Nm^3$, and $4{\times}10^6\;Nm^3$, respectively. Additionally, when biologically degradable residues can be fully treated by MBT (Mechanical & Biological Treatment) system, the total amount of $CH_4$ emitted from the site will be lowered down as low as $115{\times}10^6\;Nm^3$, which is comparably lower showing only 21.8% to that for without any energy recovery practice. Futhermore, it is far less showing 9.1% to that obtained from 2002 to 2009. It can be decided that predictable amount of $CH_4$ emission reduced could be successfully accomplished and enhanced through ways of energy recovery efforts such as further scale adjustment of LFG treatment capacity in association with currently implemented practices in the landfill site.

Size Distribution and Physicochemical Characteristics of MSW for Design of Its Mechanical Biological Treatment Process (폐기물전처리(MBT)시설 설계를 위한 생활폐기물의 입도분포 및 물리화학적 특성에 관한 연구)

  • Park, Jin-Kyu;Song, Sang-Hoon;Jeong, Sae-Rom;Jung, Min-Soo;Lee, Nam-Hoon;Lee, Byoung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • There has been a recent trend in Korea that treatments for combustible wastes among municipal solid waste (MSW) by those methods, such as incineration and landfill are restricted as much as possible and Mechanical Biological Treatment (MBT) are encouraged actively in order to promote resource recovery. To build and operate properly these facilities, the physicochemical characteristics of MSW should be analyzed precisely beforehand. In particular, designing a crusher or separator properly which is the main process in MBT facilities of MSW. require the information on the size distribution characteristics of MSW, but they are nor sufficient in the qualities and quantities yet as of now. Accordingly, this study aims to evaluate size distribution characteristics of MSW and its physicochemical characteristics by size. The samples of MSW were collected from detached dwelling area, apartment area, business area, and commercial area of A city in Korea. According to the result of analysis, paper records 29.78~60.02% by wet weight basis, so it was the most regardless of the regions where the wastes were generated. And in terms of element analysis, Carbon(C) was 34.77~44.39%, the largest friction, and Oxygen(O) was the next occupying 19.46~33.71%. As indices of RDFs, Chlorine(Cl) was 0.39~0.83%, so it was less than the standard, 2.0%(by dry weight basis); moreover, Sulfur(S) did not exceed the standard, 0.6%, either. In the size distribution of MSW, waste fraction ranging 50~80mm in diameter was the most in combustible waste while 30~50mm was in incombustible waste.

  • PDF

The study of the Composition and Physico-chemcal Characteristics of MSW in urban and gangwon area (수도권 및 강원지역 도시고형폐기물의 조성과 물리·화학적 특성연구)

  • Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.65-74
    • /
    • 2008
  • In this study, the composition and physico-chemical characteristics of municipal solid waste (MWS) which was treated in four different area were investigated. It is necessary to measure the characteristics of MSW to build a waste treatment and Refuse Derived Fuel (RDF) facility, the data-base and total managing of the landfill. It was found that the average density of solid wastes is in the range of $78.15-199.8kg/m^3$. This MSW was composed of 8.87% of food wastes, 38.8% of papers, 34.12% of plastics & vinyls, 7.16% of textiles, 0.96% of wood, 1.3% of rubber & leathers and others, respectively. Most of MSW are composed of food, paper and plastic waste and more than 94% was combustible waste. For three components, moisture is 17.38%, combustible component is 69.03% and ash is 6.24%. The chemical element has the high order of carbon, oxygen, hydrogen on the dry basis of wastes. And the low heating value of the MSW which is measured by calorimeter is calculated as 2973.8 kcal/kg and high heating value of the MSW is calculated as 5209.94 kcal/kg.

  • PDF