• Title/Summary/Keyword: 생체 데이터 전송

Search Result 164, Processing Time 0.026 seconds

The Development of Vital Sign Web Viewer Systems using HL7 Protocol (HL7 프로토콜을 이용한 생체정보 웹 뷰어 시스템 개발)

  • Lim, Se-Jung;Kang, Ki-Woong;Seo, Jong-Joo;Kim, Gwang-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.2
    • /
    • pp.123-128
    • /
    • 2007
  • HL7 is well-Known standard protocol for text data generated in hospital information systems. Vital sign information web viewer systems is also the standard protocol for medical image and transfer. In order to embrace new technologies as telemedicine service, it is important to develope the standard protocol between different systems in the hospital, as well as the communication with external hospital systems. In this paper, we proposed integration method between vital sign web viewr systems and hospital information systems. Through the proper data exchange and modification of information management, HIS will offer better workflow to all hospital employee.

  • PDF

User Authentication Risk and Countermeasure in Intelligent Vehicles (지능형 자동차의 사용자 인증에 대한 위협 및 대응 기법)

  • Kim, Seung-Hwan;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • Intellgent Vehles network capabilities can cause a lots of security issues such as data hacking, privacy violation, location tracking and so on. Some possibilities which raise a breakdown or accident by hacking vehicle operation data are on the increase. In this paper, we propose a security module which has user authentication and encryption functionalities and can be used for vehicle network system.

Research on Real-time Stream Data Monitoring for BodyNet (BodyNet 에서의 스트림 데이터 실시간 모니터링 기법의 연구)

  • Lee, Seul-A;Choi, Ok-ju;Lee, Minsoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.126-129
    • /
    • 2010
  • WBAN(Wireless Body Area Network)기반의 의료 응용으로 실시간 모니터링 시스템을 구현하였다. 특히 산소포화도 생체 센서들로부터 연속적으로 전송되는 스트림 데이터에 대해 다양한 조건을 포함하는 질의들이 실행 되는데 이러한 실시간 모니터링 질의들을 효율적으로 식별하기 위한 질의 인덱스를 설계하였다. 매번 모든 질의들을 실행하기에는 시간이 많이 걸리기 때문에 Interval Skip List 를 이용하여 빠르고 효율적으로 식별하도록 설계하였다. 이로써 위급한 상황의 환자의 건강에 문제가 생겼을 때 신속하게 대처할 수 있는 환경을 제공한다. 본 논문에서는 방대한 양의 스트림 데이터와 이 데이터를 실시간으로 감시할 수 있도록 Interval Skip List 를 스마트 메디컬 스페이스(m-MediNet)에 적용한 방법을 기술하고 있다.

Design and Implementation of Medical Information System using QR Code (QR 코드를 이용한 의료정보 시스템 설계 및 구현)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • The new medical device technologies for bio-signal information and medical information which developed in various forms have been increasing. Information gathering techniques and the increasing of the bio-signal information device are being used as the main information of the medical service in everyday life. Hence, there is increasing in utilization of the various bio-signals, but it has a problem that does not account for security reasons. Furthermore, the medical image information and bio-signal of the patient in medical field is generated by the individual device, that make the situation cannot be managed and integrated. In order to solve that problem, in this paper we integrated the QR code signal associated with the medial image information including the finding of the doctor and the bio-signal information. bio-signal. System implementation environment for medical imaging devices and bio-signal acquisition was configured through bio-signal measurement, smart device and PC. For the ROI extraction of bio-signal and the receiving of image information that transfer from the medical equipment or bio-signal measurement, .NET Framework was used to operate the QR server module on Window Server 2008 operating system. The main function of the QR server module is to parse the DICOM file generated from the medical imaging device and extract the identified ROI information to store and manage in the database. Additionally, EMR, patient health information such as OCS, extracted ROI information needed for basic information and emergency situation is managed by QR code. QR code and ROI management and the bio-signal information file also store and manage depending on the size of receiving the bio-singnal information case with a PID (patient identification) to be used by the bio-signal device. If the receiving of information is not less than the maximum size to be converted into a QR code, the QR code and the URL information can access the bio-signal information through the server. Likewise, .Net Framework is installed to provide the information in the form of the QR code, so the client can check and find the relevant information through PC and android-based smart device. Finally, the existing medical imaging information, bio-signal information and the health information of the patient are integrated over the result of executing the application service in order to provide a medical information service which is suitable in medical field.

A study on the implementation of Medical Telemetry systems using wireless public data network (무선공중망을 이용한 의료 정보 데이터 원격 모니터링 시스템에 관한 연구)

  • 이택규;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.278-283
    • /
    • 2000
  • As information communication technology developed we could check our blood pressure, pulsation electrocardiogram, SpO2 and blood test easily at home. To check our health at ordinary times is able though interlocking the house medical instrument with the wireless public data network This service will help the inconvenience to visit the hospital everytime and will save the individual's time and cost. In each house an organism data which is detected from the human body will be transmitted to the distance hospital and will be essentially applied through wireless public data network The medical information transmit system is utilized by wireless close range network It would transmit the obtained organism signal wirelessly from the personal device to the main center system in the hospital. Remote telemetry system is embodied by utilizing wireless media access protocol. The protocol is embodied by grafting CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) protocol falling mode which is standards from IEEE 802.11. Among the house care telemetry system which could measure blood pressure, pulsation, electrocardiogram, SpO2 the study embodies the ECC(electrocardiograph) measure part. It within the ECC function into the movable device and add 900㎒ band wireless public data interface. Then the aged, the patients even anyone in the house could obtain ECG and keep, record the data. It would be essential to control those who had a health-examination heart diseases or more complicated heart diseases and to observe the latent heart disease patient continuously. To embody the medical information transmit system which is based on wireless network. It would transmit the ECG data among the organism signal data which would be utilized by wireless network modem and NCL(Native Control Language) protocol to contact through wireless network Through the SCR(Standard Context Routing) protocol in the network it will be connected to the wired host computer. The computer will check the recorded individual information and the obtained ECC data then send the correspond examination to the movable device. The study suggests the medical transmit system model utilized by the wireless public data network.

  • PDF

A Study on MAC Protocol Design for Mobile Healthcare (모바일 헬스케어를 위한 MAC 프로토콜 설계에 관한 연구)

  • Jeong, Pil-Seong;Kim, Hyeon-Gyu;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.323-335
    • /
    • 2015
  • Mobile healthcare is a fusion of information technology and biotechnology and is a new type of health management service to keep people's health at anytime and anywhere without regard to time and space. The WBAN(Wireless Body Area Network) technology that collects bio signals and the data analysis and monitoring technology using mobile devices are essential for serving mobile healthcare. WBAN consisting of users with mobile devices meet another WBAN during movement, WBANs transmit data to the other media. Because of WBAN conflict, several nodes transmit data in same time slot so a collision will occur, resulting in the data transmission being failed and need more energy for re-transmission. In this thesis, we proposed a MAC protocol for WBAN with mobility to solve these problems. First, we proposed a superframe structure for WBAN. The proposed superframe consists of a TDMA(Time Division Muliple Access) based contention access phase with which a node can transmit data in its own time slot and a contention phase using CSMA/CA algorithm. Second, we proposed a network merging algorithm for conflicting WBAN based on the proposed MAC protocol. When a WBAN with mobility conflicts with other WBAN, data frame collision is reduced through network reestablishment. Simulations are performed using a Castalia based on the OMNeT++ network simulation framework to estimate the performance of the proposed superframe and algorithms. We estimated the performance of WBAN based on the proposed MAC protocol by comparing the performance of the WBAN based on IEEE 802.15.6. Performance evaluation results show that the packet transmission success rate and energy efficiency are improved by reducing the probability of collision using the proposed MAC protocol.

Random Access Phase Optimal Allocation Method Through Pattern Correction in WBAN (WBAN 환경에서 패턴 보정을 통한 임의접근구간 최적 할당 방법)

  • Lee, ChangHo;Kim, Kanghee;Kim, JiWon;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.92-105
    • /
    • 2015
  • WBAN (Wireless Body Area Network) is a network which is to consistently monitor body signals with implanted or attached sensor nodes. Especially, nodes that are used in medical services have to operate with low power consumption since they are hard to replace, and have to guarantee high data rate and low transmission delay for consistent signal monitor. In this paper, we propose an algorithm that aims to reduce transmission delay and power consumption, and guarantees stable throughput, by assuming the number of active nodes, and followed by dynamically adjusting the random access period and transmission possibilities in a superframe. The assumed number of active nodes may be incorrect since it only relies on the channel status of a previous superframe. Therefore, we assume the number of active nodes and define a pattern. And revise the number of the active nodes with the defined pattern. To evaluate the performance of the proposed algorithm, we have implemented a WBAN environment with the MATLAB. The simulation results show that the proposed algorithm provides better throughput, low power consumption, and low transmission delay when compared to the slotted ALOHA of the IEEE 802.15.6.

Design Self-Organization Routing Protocol for supporting Data Security in Healthcare Sensor Network (헬스케어 센서 네트워크에서 데이터 보안을 지원한 자기구성 라우팅 프로토콜 설계)

  • Nam, Jin-Woo;Chung, Yeong-Jee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.517-520
    • /
    • 2008
  • Wireless sensor network supporting healthcare environment should provide customized service in accordance with context information such as continuous location change and status information for people or movable object. In addition, we should consider data transmission guarantees a person's bio information and privacy security provided through sensor network. In this paper analyzes LEACH protocol which guarantees the dynamic self-configuration, energy efficiency through configuration of inter-node hierarchical cluster between nodes and key distribution protocol used for security for data transmission between nodes. Based on this analysis result, we suggested self-configuration routing protocol supporting node mobility which is weakness of the existing LEACH protocol and data transmission method by applying key-pool pre-distribution method whose memory consumption is low, cluster unit public key method to sensor node.

  • PDF

A Design of Protocol for Protection of Privacy Using Temporary ID in u-health Environment based on ZigBee (ZigBee 기반의 u-health 환경에서 임시 ID를 이용한 프라이버시 보호 프로토콜 설계)

  • Kim, Nak-Hyun;Lee, Keun-Wang;Jun, Mun-Seog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.477-480
    • /
    • 2012
  • 본 논문에서는 ZigBee 기반의 u-health 환경에서 센서노드가 고유한 식별 값을 기반으로 통신을 하기 때문에 발생될 수 있는 프라이버시 침해의 가능성이 있으므로 임시 ID를 사용하여 통신하는 프로토콜을 설계하여 제안한다. u-health 환경은 인체에서 측정된 생체신호를 센서노드가 게이트웨이 디바이스로 전송하는 ZigBee 통신 구간이 가장 취약한 부분이다. 그리고 개인의 생체신호 데이터는 의료정보로 분류될 수 있는 민감한 정보로서 보호가 필요하여 본 논문에서 해당 구간의 취약점을 보완하는 프로토콜을 제안한다.

  • PDF

Design of a Digital Modem for ECG Data Transmission (심전도 데이터 전송용 디지탈 모뎀의 설계에 관한 연구)

  • 이명호;황시돌
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 1986
  • This paper represent the design of a digital modem which transmits the ECG data from an ambulatory arrhythmia monitor over the telephone lines to a large hospital for the instantaneous interpretations. The digital modem provides on-line communications between the patient and the central computer located near cardiologists. For commercial telephone lines, the transmitting error rates of the digital modem were measured 200 times at a speed of 300 baud. In those measurements, the block errors-results, due to the misinterpretation of start and stop bits, did not occur, The data bit errors which were due to a single bit interpreted incorrectly were 0.78 (bits/10 ) . Since the acceptable data bit error limit is 10 per 106 bits transmitted, the digital modem designed in this paper can be used for the clinical applications without any difficulty.

  • PDF