• Title/Summary/Keyword: 생지화학적 영향

Search Result 63, Processing Time 0.023 seconds

Impacts of Elevated $CO_2$ on Algal Growth, $CH_4$ Oxidation and $N_2O$ Production in Northern Peatland (이탄습지에서 이산화탄소의 농도가 조류의 증식, 메탄 산화 및 아산화질소 생성에 미치는 영향)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.261-266
    • /
    • 2001
  • Effects of elevated carbon dioxide ($CO_2$) on soil microbial processes were studied in a northern peatland. Intact peat cores with surface vegetation were collected from a northern Welsh fen, and incubated either under elevated carbon dioxide (700 ppm) or ambient carbon dioxide (350 ppm) conditions for 4 months. Higher algal biomass was found under the elevated $CO_2$ condition, suggesting $CO_2$ fertilization effect on primary production, At the end of the incubation, trace gas production and consumption were analyzed using chemical inhibitors. For methane ($CH_4$ ), methyl fluoride ($CH_3F$) was applied to determine methane oxidation rates, while acetylene ($C_2H_2$) blocking method were applied to determine nitrification and denitrification rates. First, we have adopted those methods to optimize the reaction conditions for the wetland samples. Secondly, the methods were applied to the samples incubated under two levels of $CO_2$. The results exhibited that elevated carbon dioxide increased both methane production (210 vs. $100\;ng\;CH_4 g^{-1}\;hr^{-1}$) and oxidation (128 vs. $15\;ng\;CH_4 g^{-1}\;hr^{-1}$), resulting in no net increase in methane flux. For nitrous oxide ($N_2O$) , elevated carbon dioxide enhanced nitrous oxide emission probably from activation of nitrification process rather than denitrification rates. All of these changes seemed to be substantially influenced by higher oxygen diffusion from enhanced algal productivity under elevated $CO_2$.

  • PDF

The Importance of groundwater discharge for environmental assessment of Chinhae Bay (진해만 환경평가를 위한 해저지하수의 중요성)

  • Chung Chong Soo;Hong Gi Hoon;Kim Suk Hyun;Kim Young Il;Moon Duk Soo;Park Jun Kun;Choi Jun Sun;Yang Dong Beom
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.23-36
    • /
    • 2000
  • Bottom sea waters in eight stations including from inner bay to outer bay to understand the importance of the submarine groundwater discharge for the environmental assessment of Chinhae Bay was collected in August 1999 and January 2000. Generally, /sup 222/Rn is very useful tracer to assess the submarine groundwater discharge because it is 2-4 orders of magnitude more concentrated in groundwater compared to surface water. The /sup 222/Rn activities ranged between about 33 to 182 dpm/100kg within the bay. Higher activities more than 100 dpm/100kg were found at the inner bay. The /sup 226/Ra activities, its parent, however, were little different between stations. /sup 222/Rn activities at the same station varied with season. It suggests that the major source of /sup 222/Rn is not from the bottom sediment, but from the change of submarine groundwater discharge by precipitation. The contents of Cl/sup -/ and SO/sub 4//sup 2-/ in the groundwater of Wonjeon-ri were very high as 1,312 and 369 ppm, respectively, indicating that this groundwater along the Chinhae coast was affected by seawater. Therefore, the submarine groundwater in the inner Bay may discharge to the overlying water. It indicates that these submarine groundwater discharges may play an important role as another important source of nutrients in the Chinhae Bay, because groundwater around the Chinhae Bay showed high concentration of dissolved inorganic nutrients (average , nitrate>174 μM, silicate>262 μM). Therefore, further studies are required to assess the contribution by the submarine groundwater discharge in the biogeochemical processes of the Chinhae Bay.

  • PDF

Simulation of Spatio-Temporal Distributions of Winter Soil Temperature Taking Account of Snow-melting and Soil Freezing-Thawing Processes (융설과 토양의 동결-융해 과정을 고려한 겨울철 토양온도의 시공간 분포 모의)

  • Kwon, Yonghwan;Koo, Bhon K.
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.945-958
    • /
    • 2014
  • Soil temperature is one of the most important environmental factors that govern hydrological and biogeochemical processes related to diffuse pollution. In this study, considering the snowmelting and the soil freezing-thawing processes, a set of computer codes to estimate winter soil temperature has been developed for CAMEL (Chemicals, Agricultural Management and Erosion Losses), a distributed watershed model. The model was calibrated and validated against the field measurements for three months at 4 sites across the study catchment in a rural area of Yeoju, Korea. The degree of agreement between the simulated and the observed soil temperature is good for the soil surface ($R^2$ 0.71~0.95, RMSE $0.89{\sim}1.49^{\circ}C$). As for the subsurface soils, however, the simulation results are not as good as for the soil surface ($R^2$ 0.51~0.97, RMSE $0.51{\sim}5.08^{\circ}C$) which is considered resulting from vertically-homogeneous soil textures assumed in the model. The model well simulates the blanket effect of snowpack and the latent heat flux in the soil freezing-thawing processes. Although there is some discrepancy between the simulated and the observed soil temperature due to limitations of the model structure and the lack of data, the model reasonably well simulates the temporal and spatial distributions of the soil temperature and the snow water equivalent in accordance with the land uses and the topography of the study catchment.

The Effect of Addition of Potato Starch on the Frozen Dough (감자 전분의 첨가가 냉동 반죽에 미치는 영향)

  • 이명구;이종민;장준형;박정길
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.5
    • /
    • pp.403-410
    • /
    • 2000
  • This study was carried out to understand the effect of addition of potato search on the frozen dough. The characteristics of frozen dough were measured by the farinogram, the extensogram and the amylogram. The results of these measurements show that the dough added with starch has higher stability than the control. The physical and chemical change of the dough were measured in accordance with the period of the frozen storage. The dough added with starch showed smaller physical and chemical change than control, which means that the starch prevents the frozen dough from the deterioration during the frozen storage. It is supposed from this result that the starch protects the activity of yeast and the structure of gluten matrices from frozen damage. It is understood from this study that addition of potato starch into frozen dough improve the stability of the frozen dough.

  • PDF

Distribution and Pollution of Heavy Metals in the Environmental Samples of the Lake Shihwa (시화호 환경 중의 중금속 분포 특성과 오염)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Chung, Kyung-Ho;Park, Jun-Kun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.148-157
    • /
    • 2005
  • In order to understand distribution characteristics and pollution of heavy metals in the artificial Lake Shihwa in the vicinity of Kyunggi Bay in relation with huge environmental changes, various environmental samples including seawaters, surface sediments and settling particulate matters were collected from Lake Shihwa in 2004. Due to extreme pollutant discharge from various anthropogenic sources such as the Banweol and Shihwa Industrial Complexes and cities, the highest metal concentrations in the samples such as waters, sediments and settling particulate matter were found in inner part of the lake. High metal contents (Cu, Zn and Hg) in sediments were observed at Sts. 2-4 and 9. The contents of Cr, Co, Ni, Cu, Zn and Pb in SPMs were high at St. 5 and low in the outer part of the lake. Spatial distribution of heavy metals were mainly controlled various biogeochemical factors and physical mixing as well as input of industrial and municipal wastewaters. Although tile environmental qualities of heavy metals in the lake have been improved partially due to inflow of outer seawater, it is not clear to reach a good environmental quality. Therefore, further environmental programs should be conducted continuously for environmental improvement.

  • PDF

Significance of Estuarine Mixing in Distribution of Bacterial Abundance and Production in the Estuarine System of the Mankyung river and Dongjin River, Korea (만경강 및 동진강 하구의 박테리아 개체수와 생산량 분포에 있어서의 하구 혼합 (estuarine mixing)의 중요성)

  • CHO, BYUNG CHEOL;SHIM, JAE HYUNG
    • 한국해양학회지
    • /
    • v.27 no.2
    • /
    • pp.154-163
    • /
    • 1992
  • Bacterial abundance, production, and environmental parameters were investigated three times to study distribution of bacterial variables and to examine how estuarine mixing would influence the distribution of bacterial variables in the euphotic zone of the estuarine system of the Mankyung river and Dongjin river during a period of October, 1990-August, 1991. Although a limited number of investigations were made, bacterial abundance and production showed large variations from 0.4 to 5.8${\times}$10/SUP 9/ 1/SUP -1/ and from 0.1 to 22.2 ug C 1/SUP -1/ d/SUP -1/, respectively. The wide ranges of bacterial variables indicated very dynamic changes in conditions of bacterial growth in the estuary. Interestingly, bacterial abundance substantially increased with depth in most stations f shallow depth. but bacterial production remarkably decreased with depth. We propose that the observed distribution of bacterial abundance and production would be explained by estuarine mixing in the estuary. Analyses of mixing diagrams showed that estuarine mixing would mix conservatively bacteria and bacterial production. Further, estuarine mixing often seemed to cause an increase in bacterial abundance and reduction of bacterial production presumably due to resuspension of sediment. This suggests that roles of estuarine mixing would be significant in the distribution of bacterial abundance and production, and thus in biogeochemical cycles in the estuary.

  • PDF

Ecology of Groundwater Microorganisms in Aquifers (대수층 지하수 미생물의 생태)

  • Kim, Young-Hwa;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1086-1095
    • /
    • 2017
  • There is growing interest in groundwater resources to overcome the loss of surface water resources due to climate change. An understanding of the microbial community of aquifers is essential for monitoring and evaluating groundwater contamination, as well as groundwater management. Most microorganisms that inhabit aquifer ecosystems are attached to sediment particles rather than planktonic, as is the case in groundwater. Since sampling aquifer sediment is not easy, groundwater, which contains planktonic microorganisms, is generally sampled in microbial community research. Although many studies have investigated microbial communities in contaminated aquifers, there are only a few reports of microbial communities in uncontaminated or pristine aquifers, resulting in limited information on aquifer microbial diversity. Such information is needed for groundwater quality improvement. This paper describes the ecology and community structure of groundwater bacteria in uncontaminated aquifers. The diversity and structures of microbial communities in these aquifers were affected by the concentration or distribution of substrates (e.g., minerals, organic matter, etc), in addition to groundwater characteristics and human activities. Most of the microbial communities in these uncontaminated aquifers were dominated by Proteobacteria. Studies of microbial communities in uncontaminated aquifers are important to better understand the biogeochemical processes associated with groundwater quality improvement. In addition, information on the microbial communities of aquifers can be used as a basis to monitor changes in community structure due to contamination.

Behavior of heavy metals in the surface waters of the Lake Shihwa and its tributaries (시화호와 주변 하천 표층수중의 중금속 거동 특성)

  • Kim Kyung Tae;Lee Soo Hyung;Kim Eun Soo;Cho Sung Rok;Park Chung Kil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.51-67
    • /
    • 2002
  • In order to understand behaviors of heavy metals around the artificial Lake Shihwa in the vicinity of Kyunggi Bay in Korea in relation with huge environmental changes due to construction of huge artificial lake, water samples were collected from Lake Shihwa and its tributaries from 1996 to 1998 and analyzed. Due to extreme pollutant discharge from various kinds of anthropogenic sources such as the Banweol and Shihwa Industrial Complexes and cities, the Shihwa and its tributaries have been polluted in waters with various heavy metals. The enrichment factors of particulate heavy metals in water of streams and storm sewers were very high. All of the heavy metals observed in the waters showed relatively high temporal and spatial variations. In surface waters of the lake during the desalination after the dike establishment, spatial distributions of heavy metal concentrations were mainly controlled by various biogeochemical factors as well as input of industrial and municipal wastewaters, while, physical mixing was minor factor Pb and Co showed a strong affinity to particle phase, however the affinity to dissolved phase was dominated in Ni, Cu and Cd. Water quality of the artificial Lake Shihwa has been deteriorated by direct discharge of untreated wastewater and heavy metals have been accumulated in the lake system. Therefore, luther environmental improvement plan should be programmed subsequently.

  • PDF

Springtime Distribution of Inorganic Nutrients in the Yellow Sea: Its Relation to Water Mass (수괴특성에 따른 춘계 황해의 영양염 분포 특성)

  • Kim, Kyeong-Hong;Lee, Jae-Hak;Shin, Kyung-Soon;Pae, Se-Jin;Yoo, Sin-Jae;Chung, Chang-Soo;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Inorganic nutrient concentrations in relation to springtime physical parameters of the Yellow Sea were investigated during April 1996. Three major water masses, i.e., the Yellow Sea Warm Current Water (YSWC), Coastal Current Water (CCW) and Changjiang River Diluted Water (CRDW), prevailed in the study area. Water masses were vertically wel1 mixed throughout the study area, and nutrients were supplied adequately from bottom to surface layer. As result of ample nutrients supplied by vertical mixing together with progressed daylight condition, springtime phytoplankton blooms were observed, which was responsible for the depletion of inorganic nutrients in surface water column. Low nutrients concentration in bottom water of the central Yellow Sea (Stn. D9; nitrate: <2 ${\mu}$M, phosphate: <0.3 ${\mu}$) was associated with the entrance of YSWC which is characterized by high temperature and salinity. Influenced by runoff and vertical tidal mixing, CCW with high nutrient concentrations probably associated with China and Korea coastal waters with high nutrients concentration. For the local scale of inorganic nutrient distribution, nutrient transfers from coast to central areas were limited due to restriction imposed by tidal fronts (Stn. D6) and thus affected the horizontal nutrient profiles. Relatively high phytoplankton biomass was observed in the tidal front (Chl-${\alpha}$=12.38 ${\mu}$gL$^{-1}$) during the study period. Overall, the springtime nutrient distribution patterns in the Yellow Sea appeared to be affected by: (1) Large-scale influx of YSWC with low nutrient concentrations and CCW with high nutrient concentrations influenced by Korea and China coastal waters; (2) vertical mixing of water mass and phytoplankton distribution; and (3) local-scale tidal front as well as phytoplankton blooms alongthe tidal front.

  • PDF

A Simulation Study to Investigate Climatic Controls on Net Primary Production (NPP) of a Rugged Forested Landscape in the Mid-Western Korean Peninsula (기복이 심한 한반도 중서부 산림경관에서 기후가 순일차생산(NPP)에 미치는 영향에 대한 모사연구)

  • Eum Sungwon;Kang Sinkyu;Lee Dowon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.66-77
    • /
    • 2005
  • We have investigated microclimatic controls on the spatiotemporal variations of net primary production (NPP) of a rugged forested watershed using the process-based biogeochemical model (BIOME-BGC). To validate the model simulation of water and carbon cycles at the plot scale, we have conducted field survey over deciduous broadleaf forest (DBF) and evergreen needleleaf forest (ENF) since 2000. The modeled values of soil temperature, soil moisture and soil respiration showed high correlation with those from the field measurements. The modeled seasonal changes of NPP showed high correlation with air temperature but no significant correlation with water related parameters. The precipitation frequency turned out to be the best climatic factor to explain the annual variation of NPP. Furthermore, NPP of ENF was more sensitive to precipitation frequency than that of DBF. With changes in vegetation cover and topography, the spatial distribution of NPP was of great heterogeneity, which was negatively correlated with the magnitude of NPP. Despite the annual precipitation of 1,400mm, NPP at the study site was constrained by the amount of water available for the vegetation. Such a modeling result should be verified by the field measurements.