• Title/Summary/Keyword: 생지화학적 영향

Search Result 63, Processing Time 0.024 seconds

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.

Metal Reduction and Mineral formation by fe(III)-Reducing Bacteria Isolated from Extreme Environments (철환원 박테리아에 의한 금속 환원 및 광물형성)

  • Yul Roh;Hi-Soo Moon;Yungoo Song
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.231-240
    • /
    • 2002
  • Microbial metal reduction influences the biogeochemical cycles of carbon and metals as well as plays an important role in the bioremediation of metals, radionuclides, and organic contaminants. The use of bacteria to facilitate the production of magnetite nanoparticles and the formation of carbonate minerals may provide new biotechnological processes for material synthesis and carbon sequestration. Metal-reducing bacteria were isolated from a variety of extreme environments, such as deep terrestrial subsurface, deep marine sediments, water near Hydrothemal vents, and alkaline ponds. Metal-reducing bacteria isolated from diverse extreme environments were able to reduce Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI) using short chain fatty acids and/or hydrogen as the electron donors. These bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite ($Fe_3$$O_4$), siderite ($FeCO_3$), calcite ($CaCO_3$), rhodochrosite ($MnCO_3$), vivianite [$Fe_3$($PO_4$)$_2$ .$8H_2$O], and uraninite ($UO_2$). Geochemical and environmental factors such as atmospheres, chemical milieu, and species of bacteria affected the extent of Fe(III)-reduction as well as the mineralogy and morphology of the crystalline iron mineral phases. Thermophilic bacteria use amorphous Fe(III)-oxyhydroxide plus metals (Co, Cr, Ni) as an electron acceptor and organic carbon as an electron donor to synthesize metal-substituted magnetite. Metal reducing bacteria were capable of $CO_2$conversion Into sparingly soluble carbonate minerals, such as siderite and calcite using amorphous Fe(III)-oxyhydroxide or metal-rich fly ash. These results indicate that microbial Fe(III)-reduction may not only play important roles in iron and carbon biogeochemistry in natural environments, but also be potentially useful f3r the synthesis of submicron-sized ferromagnetic materials.

Hydro-ecological characterizations in groundwater dependent ecosystem (지하수 종속 생태환경에서 수문-생태학적 특성 조사 및 분석)

  • Kim, Hee-Jung;Hyun, Yun-Jung;Lee, Kang-Kun
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The groundwater dependent ecosystem associated with a natural stream is the area where mixing and exchange of surface water and groundwater occurs due to large chemical and hydraulic gradients. Surface-groundwater interactions play an important role in biogeochemical processes in groundwater dependent ecosystems and make this area a hydro-ecological hot spot. The objective of this study is to characterize the groundwater dependent ecosystem in a natural stream where nitrate contamination of stream water is observed by means of hydrogeological, chemical, and biological methods. In this study, vertical flow exchange(hyporheic flow) rates between stream and groundwater were estimated based on vertical hydraulic gradients measured at mini-piezometers of various depths. To investigate the biological natural attenuation potential, biological analyses using polymerase chain reaction(PCR)-cloning methods were performed in this study. Results show that the veritical hyporheic water fluxes affect nitrate concentrations and bacterial densities in groundwater dependent ecosystems to some degree. Also, denitrifying bacteria were identified in hyporheic soils, which may support the biodegradation potential of the groundwater dependent ecosystems under certain conditions.

  • PDF

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.

A Study on Seawater Quality Criteria and Assessment of Thermal Discharge from Nuclear Power Plant (원자력발전 온배수 영향에 대한 해수질 환경조사 지침 연구)

  • Park, Yong-Chul;Kim, Sung-Jun;Kim, Eun-Soo;Lee, Hee-Jun;Lee, Hyo-Jin;Kim, Dong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.50-56
    • /
    • 2007
  • Impact of thermal discharge of nuclear power plant on marine environment is naturally reflected in biogeochemical changes of seawater. Until now, many investigation activities and reports of impact analysis of marine environment were occasionally inadequate to provide sufficient justification in resolving controversial conflict of interests related with thermal discharge of nuclear power plant. From the scrutinized examination of recent 17 reports published in Korea between 2002 and 2004, the most apparent issue was inadequacy of sampling design and absence of significance of many measured parameters. In many cases, lack of statistical interpretation of raw data incurred subjective or ambiguous assessment results, which failed in deducing mutual concurrence between the parties of interest. In overall all, the main reasons for impairing integrity of previous reports seem to be inconsistency of environmental investigation procedures between research institutions, inadequate sampling design at the discretion of institutions and lack of objectivity of impact assessment based on statistical interpretation. Therefore, the primary goal of this study is to (1) discuss the blown issues on previous routine practice of seawater quality assessment procedures, and to (2) provide improved investigation procedures and rational standard criteria strictly based on statistical analysis for the better seawater quality assessment, which could be supported by scientific community, public agency, investigation institution and the other parties of interest.

Importance of Polar Phytoplankton for the Global Environmental Change (전 지구 환경변화에 대한 극지 식물플랑크톤의 중요성)

  • 강성호;강재신;이상훈;김동선;김동엽
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2000
  • There are increasing evidences of climate change in the Antarctic and Arctic Oceans, especially elevated temperature due to the continuous burning of the fossil fuels and ultraviolet B(UV-B) flux within the ozone hole. Light-dependent, temperature-sensitive, and fast-growing organisms respond to these physical and biogeochemical changes. Polar marine phytoplankton, which are pioneer endemic species and important carbon contributors in the polar waters, are therefore highly suitable biological indicators of such changes. By virtue of light requirement, the primary producers are exposed to extreme seasonal fluctuations in temperature, photosynthetically active radiation, and UV radiation. Local environmental warming and increased UV-B radiation during ozone depletion may have profound effects on the primary producers that are primary carbon producers in the polar water. Small changes in climate temperature and solar radiation may have profound effects on the activity threshold of the polar phytoplanktion. To demonstrate biological response to the environmental changes, standardized representative natural and biological parameters are needed so that replicate samples (including controls) can be taken over extended periods of time. In this paper, we review general characteristics of polar phytoplankton, their environment, environmental changes in the polar waters, the effects on the environmental changes to the polar phytoplankton, and the importance of the polar phytoplankton to understand the global environmental changes. [Biological indicators, Global environmental change, Polar phytoplankton, UV].

  • PDF

Effects of Global Warming on the Estuarine Wetland Biogeochemistry (기후변화가 하구 습지 토양의 생지화학적 반응에 미치는 영향에 관한 연구)

  • Ki, Bo-Min;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.553-563
    • /
    • 2011
  • This study investigated the effects of elevated $CO_2$ and nitrogen addition on the anaerobic decomposition mediated by microorganisms to determine the microbial metabolic pathways in the degradation of organic matters of the sediments. There were statistically significant differences(P < 0.05) in the rates between denitrification and methanogenesis upon increased $CO_2$ concentration, nitrogen addition, in the presence of plants. Based on the assumption that anaerobic degradation of organic matter mainly occurs through denitrification, iron reduction, and methanogenesis, methanogenesis is the dominant pathways in the decomposition of organic matter under the condition of elevated $CO_2$ and nitrogen addition. In addition, the altered environment increased anaerobic carbon decomposition. Therefore, it can be concluded that freshwater wetland sediments have positive effects on the global warming by the increased methanogenesiss as well as increased anaerobic carbon decomposition.

Sulfate Reduction in the Marine Environments: Its Controlling Factors and Relative Significance in Mineralization of Organic Matter (해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성)

  • 현정호;이홍금;권개경
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.210-224
    • /
    • 2003
  • Sulfate reduction is a microbiological process which occurs ubiquitously in anaerobic marine environment. Sulfate reducing bacteria play a significant role in anaerobic decomposition of organic matter and regeneration of inorganic nutrients which supports the primary production in the water column (i.e., benthic-pelagic coupling) and, in special case, could be responsible for the harmful algal bloom in the coastal marine environment. Summary of the sulfate reduction rates reported in various marine sedimentary environments revealed that supply of organic substrates and presence of various electron acceptors (i.e., $O_2$, NO$_{3}$$^{[-10]}$ , Fe(III) and Mn(IV), etc.) for other aerobic and anaerobic respiration directly affect the sulfate reduction rate and relative significance of sulfate reduction in organic matter mineralization. Significance of temperature, macrophytes and bioturbation is discussed as factors controlling supply of organic substrates and distribution of electron acceptors. Finally, we suggest studies on the anaerobic microbiological processes associated with biogeochemical element cycles in the coastal environments of Korea where massive operation of organic enriched fish cage farm, frequent occurrence of toxic algal bloom and hypoxia and conservation of tidal flat are of major environmental issues.

Bacterial Distribution and Relationship with Phytoplankton in the Youngsan River Estuary (영산강 하구의 박테리아 분포 및 식물플랑크톤과의 관계)

  • Kim, Se Hee;Sin, Yong Sik
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.53-62
    • /
    • 2019
  • Heterotrophic bacteria are a major member of the microbial loop in the marine ecosystem and play an important role in the biogeochemical cycle decomposing organic matter. Therefore study of bacterial variation is important to understand the material cycle and energy flow of marine ecosystems. We investigated the monthly variations of bacteria and environmental factors in the Youngsan River estuary, and the correlation between bacteria and phytoplankton biomass (chlorophyll-a) including size-structure. As a result, bacteria of the Youngsan River estuary were higher in the surface than in the bottom layer, and higher in the summer than in winter. And the closer to the dike, the abundance increased, and it increased to the peaks in August, September, and June 2019 at the station closest to the dike. The chlorophyll-a also increases at the stations and time when the bacterial abundance was high and they correlates positively displaying no difference between size fractions. The results indicate that organic matter derived from phytoplankton has an effect on bacterial variation but no size-dependent effects. In addition, the seasonal pattern of bacteria increasing in proportion to the water temperature suggests the effect of water temperature on the growth of bacteria. No association of bacterial abundance variation with nutrient supply due to freshwater input was observed. In this study, dissolved oxygen was depleted and hypoxia was observed for a short time when a strong stratification was not developed. This may be resulted from the supply of organic matter from phytoplankton and the consumption of oxygen due to bacterial decomposition.

제도 운영과 수학교육과 교육과정

  • Mun, Gwon-Bae
    • Communications of Mathematical Education
    • /
    • v.12
    • /
    • pp.463-477
    • /
    • 2001
  • 국가의 국가경쟁력은 학창시절 학생의 학력만큼 중요하다. 성인의 경우, 학력을 위한 노하우는 체험을 통해 터득할 수 있었다. 그러나 국가경쟁력에 관해서는 우물 안 내부관점을 벗어나기 힘들어 추진 방향과 제도 운영에 자칫 시행착오를 범하기 쉽다. 이는 사안에 대해 본질적인 접근보다 껍데기만을 쫓기 때문이었다. 이 현상을 분석하려면 관점과 보이지 않는 영역의 것들을 다룰 수 있는 수학적 사고법이 필요하며, 이 능력은 현 지식정보화 사회에서 매우 긴요하다. 그러나 현실은 여러 가지 이유로 수학적 사고법을 비롯한 기초학문을 위기로 몰아가고 있고, 안타깝지만 그 중심에 수학교육이 자리잡고 있다. 수학교육의 위기를 유발하는 요인으로 제도 운영에 관한 건이 있다. 제도 운영에서 한 변수의 변화, 예로 대입의 계열교차지원 허용 건, 교원임용고시에서 교과교육학 영역의 출제 건과 복수전공, 부전공 자격소지자에 대한 가산점 부여 건은 수학교육과 교육과정에 직, 간접적으로 영향을 미친다. 이 관계를 사범대학 수학교육과 현장의 사례를 통하여 조명하고, 그 문제점을 지적하고자 한다. 현 사범교육은 졸업이수학점 140학점 체제하에서 제 7차 교육과정에 따른 복수전공, 부전공 우대 정책을 펴고 있다. 수학교육과의 경우, 부전공 열풍이 불어 전공선택 과목이 3학년 1학기부터 폐강될 위기에 처해 있다. 교양교육의 고사 또는 전광교육이 예전보다 반으로 줄어들게 된 사범대학 실상에 비애감을 느끼게 된다. 이는 전문화된 교사 양성, 나아가 미래 국가경쟁력 향상에 심각한 저해 요소로 작용할 것이다. 복잡다단한 세상에서 최적화를 향한 개선 노력이 멈춰서는 안 된다. 현행 교원임용고시 운영상의 문제점을 공론화하고, 수학교육인의 중지를 모아야 할 긴박한 시점이다. 이를 계기로 교원임용고시의 운영개선과 수학교육과 교육과정을 한층 더 견실하게 하는 데에 이바지하고자 한다. 것이라면 후속연구로 이러한 가능성을 실험연구로 검증하고자 한다.toceros resting spores/Chaetoceroe vegetative cells도 80 cm 보다 상층에서는 높게 나타나 규조온도지수 분포와도 일치하는 경향을 보인다. 이상의 규조군집 분석 결과에 의하면, 홀로세의 후빙기동안 본 연구 지역인 동해 북동부에는 대마 난류의 유입이후 현재와 유사한 환경이 우세하게 발달했으나, 난류종 P. doliolus의 변화는 동해내에서 대마난류의 세기가 반복되었음을 지시하고 있다./3 수준으로 높다. 결론적으로 풍부한 화학물질들을 함유한 제주해류는 남해 및 동해의 생지화학적 과정들에 있어 상당히 중요함을 시사한다.다. 수조 상층수 중 Cu, Cd, As 농도는 모든 FW, SW수조에서 시간이 지남에 따라 일관성 있게 감소하였고, 제거속도는 Cu가 다른 원소에 비해 빨랐다. 제거속도는 FW 3개 수조 중 FW5&6에서 세 원소 모두 가장 느렸고, SW 3개 수조 중에서는 SW1&2에서 가장 빨랐다. SW와 FW간 제거속도 차이는 세 원소 모두 명확치 않았다 Cr은 FW에서 전반적으로 감소하는 경향을 보였지만 SW에서는 실험 초기에 감소하다 24시간 이후에는 증가 후 일정한 양상을 보였다. Pb은 FW에서 전반적으로 감소했지만 SW에서는 초기에 급격히 증가 후 다시 급격히 감소하는 양상을 보였다 Pb 또한 Cu, Cd, As와 마찬가지로 SW1&2에서 제거속도가 가장 빠르게 나타났다. FW 상층수 중 Hg는 시간에 따라 급격히 감소했고, 제거속도는 Fw5&6에서 가장 느렸다. 이러한 결과에 근거할 때 벼가 자라고 있고 이분해성 유기물이 풍부한 FW1&2, FW3&4 토양과 상층수에서는 유기물의 분해 활동이 활발하였지만, 벼가 경작되지 않는 FW5&6과 SW 에서는 유기물이 상대적으로 결핍되어 유기물의 분해활동이 적었을 것으로 판단된다

  • PDF