자연어 처리는 최근 기계학습 및 딥러닝 기술의 발전과 적용으로 성능이 빠르게 향상되고 있으며, 이로 인해 활용 분야도 넓어지고 있다. 특히 비정형 텍스트 데이터에 대한 분석 요구가 증가함에 따라 자연어 처리에 대한 관심도 더욱 높아지고 있다. 그러나 자연어 전처리 과정 및 기계학습과 딥러닝 이론의 복잡함과 어려움으로 인해 아직도 자연어 처리 활용의 장벽이 높은 편이다. 본 논문에서는 자연어 처리의 전반적인 이해를 위해 현재 활발히 연구되고 있는 자연어 처리의 주요 분야와 기계학습 및 딥러닝을 중심으로 한 주요 기술의 현황에 대해 살펴봄으로써, 보다 쉽게 자연어 처리에 대해 이해하고 활용할 수 있는 기반을 제공하고자 한다. 이를 위해 인공지능 기술 분류체계의 변화를 통해 자연어 처리의 비중 및 변화 과정을 살펴보았으며, 기계학습과 딥러닝을 기반으로 한 자연어 처리 주요 분야를 언어 모델, 문서 분류, 문서 생성, 문서 요약, 질의응답, 기계번역으로 나누어 정리하고 각 분야에서 가장 뛰어난 성능을 보이는 모형들을 살펴보았다. 그리고, 자연어 처리에서 활용되고 있는 주요 딥러닝 모형들에 대해 정리하고 자연어 처리 분야에서 사용되는 데이터셋과 성능평가를 위한 평가지표에 대해 정리하였다. 본 논문을 통해, 자연어 처리를 자신의 분야에서 다양한 목적으로 활용하고자 하는 연구자들이 자연어 처리의 전반적인 기술 현황에 대해 이해하고, 자연어 처리의 주요 기술 분야와 주로 사용되는 딥러닝 모형 및 데이터셋과 평가지표에 대해 보다 쉽게 파악할 수 있기를 기대한다.
미래 사회의 특징은 다양하고 방대한 지식과 정보의 생성 그리고 AI 등의 과학 기술을 이용하여 이를 활용하는 것이라고 할 수 있다. 이에 따라 교과 지식을 중점적으로 가르치는 전통적인 교육에서 역량을 강조하는 교육으로의 변화가 필요하며 이에 부응하기 위해 2015 개정 교육과정도 학생들이 미래 사회를 대비할 수 있도록 역량교육을 도입하였다. 본 연구는 교육과정에 역량교육을 도입한 이후 중·고등학교에서 역량교육과 관련한 학교장의 인식을 탐색하고, 지역과의 연계 필요성 및 역량 평가 등, 역량교육을 강화하기 위한 정책적 제언을 제시하는 것을 목적으로 한다. 본 연구는UNESCO Bangkok의 국제간 비교 연구인 횡단적 역량 연구에서 제시하는 횡단적 역량을 참고하여 학교장들을 대상으로 설문조사와 심층 면담을 실시하였다. 분석 결과 연구 참여자들은 학교 운영에 있어 역량교육과 학생들의 역량함양을 강조하고 있었으며 학생과 교사에게 긍정적인 변화가 있었다고 응답하였다. 또한, 학교장들은 역량교육의 실행에 영향을 미치는 요인과 학생들의 역량 함양을 위한 교수법 등에 대해서도 의견을 제시하였다. 본 연구의 결과는 2015 개정 교육과정에서 제시하고 있는 역량교육의 실행에 대한 실증적 자료로써 의미가 있으며 이는 향후 진행될 교육과정 개정에 방향을 제시할 것으로 기대되며 나아가 역량 관련 교육정책 수립과 추진에도 기여할 수 있을 것으로 기대된다.
MPEG 내 VCM 그룹은 머신을 위한 비디오 코덱을 표준화하는 것으로 목표로 하고 있다. VCM 그룹은 객체 탐지, 객체 분할, 객체 추적 등 3가지의 머신비전 태스크를 포함한 데이터 세트와 데이터 세트 별 기준 데이터인 Anchor를 제공하고 있으며, 평가 템플릿을 이용하여 후보 기술군과 Anchor의 압축 대비 머신비전 성능을 비교할 수 있다. 하지만 성능 비교는 머신비전 태스크 별로 분리하여 수행되고 있으며, 다수의 머신비전 태스크에 대한 성능 평가를 수행할 수 있는 비트스트림을 생성할 수 있는 데이터는 별도로 제공하고 있지 않다. 본 논문에서는 인공 지능 기반 멀티 태스크를 위한 비디오 코덱의 성능 평가 방안에 대해 제안한다. 하나의 비트스트림의 크기 척도인 픽셀 당 비트수(BPP, Bits Per Pixel) 와 각 태스크의 정확도 결과인 Mean Average Precision(mAP)를 기반으로 산술 평균, 가중 평균, 조화 평균 등 총 3가지의 멀티 태스크 성능 평가 지표를 제안하며 mAP 결과를 기반으로 성능 결과를 비교하고자 한다. 멀티 태스크에서 태스크 별 mAP 결과 값의 범위의 차이가 있을 수 있으며 차이로 인해 생길 수 있는 성능 평가와 관련된 문제를 방지하고자 정규화한 mAP 기반 멀티 태스크 성능 결과를 산출하고 평가하고자 한다.
도시의 인구 집중과 무분별한 개발은 대기오염, 열섬현상과 같은 다양한 환경 문제들을 유발하며, 자연재해로 인한 피해 상황을 악화시키는 등 인재의 원인이 되고 있다. 도심 수목은 이러한 도시 문제들의 해결방안으로 제시되어왔으며, 실제로 환경 개선 기능을 제공하는 등 중요한 역할들을 수행한다. 이에 따라 수목이 도시 환경에 미치는 영향을 파악하기 위해 도심 수목에서 개별목에 대한 정량적인 측정 및 분석이 요구된다. 그러나 도심 수목의 복잡성 및 다양성은 단일 수목 탐지 정확도를 낮추는 문제점이 존재한다. 따라서 본 연구는 수목 개체에 대해 효과적인 탐지가 가능한 고해상도 항공영상 및 object detection에서 뛰어난 성능을 발휘한 You Only Look Once Version 5 (YOLOv5) 모델을 사용하여 도심 수목을 효과적으로 탐지하는 연구를 진행하였다. 수목 AI 학습 데이터셋의 구축을 위한 라벨링 가이드라인을 생성하고 이를 기준으로 동작구 수목에 대해 box annotation을 수행하였다. 구축된 데이터셋으로부터 다양한 scale의 YOLOv5 모델들을 테스트하고 최적의 모델을 채택하여 효율적인 도심 수목 탐지를 수행한 결과, mean Average Precision (mAP) 0.663의 유의미한 결과를 도출하였다.
산불의 발생과 강도는 기후 변화로 인하여 증가하고 있다. 산불 연기에 의한 배출가스 대기질과 온실 효과에 영향을 미치는 주요 원인 중 하나로 인식되고 있다. 산불 연기의 효과적인 탐지를 위해서는 위성 산출물과 기계학습의 활용이 필수적이다. 현재까지 산불 연기 탐지에 대한 연구는 구름 식별의 어려움 및 모호한 경계 기준 등으로 인한 어려움이 존재하였다. 본 연구는 우리나라 환경위성 센서인 Geostationary Environment Monitoring Spectrometer (GEMS)의 Level 1, Level 2 자료와 기계학습을 이용한 산불 연기 탐지를 목적으로 한다. 2022년 3월 강원도 산불을 사례로 선정하여 산불 연기 레이블 영상을 생성하고, 랜덤 포레스트 모델에 GEMS Level 1 및 Level 2 자료를 투입하여 연기 픽셀 분류 모델링을 수행하였다. 훈련된 모델에서 입력변수의 중요도는 Aerosol Optical Depth (AOD), 380 nm 및 340 nm의 복사휘도 차, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), 포름알데히드, 이산화질소, 380 nm 복사휘도, 340 nm 복사휘도의 순서로 나타났다. 또한 2,704개 픽셀에 대한 산불 연기 확률(0≤p≤1) 추정에서 Mean Bias Error (MBE)는 -0.002, Mean Absolute Error (MAE)는 0.026, Root Mean Square Error (RMSE)는 0.087, Correlation Coefficient (CC)는 0.981의 정확도를 보였다.
IETF(Internet Engineering Task Force)는 저전력 손실 네트워크 환경인 LLNs(Low power and Lossy Networks)의 라우팅 프로토콜로 RPL(IPv6 Routing Protocol for Low-power Lossy Network)을 표준화하였다. RPL은 LLNs에서 요구하는 서비스에 적합한 OF(Objective Function)를 통해 경로를 생성하고 DODAG(Destination Oriented Directed Acyclic Graph)를 구축한다. 기존 연구들은 각 노드의 잔여 에너지를 확인하여 잔여 에너지가 높은 부모를 선택하여 DODAG를 구축하지만 실제 부모 노드가 에너지를 전부 소모하기 전에 DODAG를 떠나고 새로운 DODAG를 구축하는 방식은 없었다. 따라서 본 논문에서는 DODAG에 가입된 노드의 에너지 잔량이 지정된 에너지 한계점 이하로 떨어지면 그 노드가 DODAG를 미리 떠나는 EC-RPL(Enhanced Connectivity-RPL)을 제안한다. 제안된 프로토콜을 오픈소스 사물인터넷 운영체제인 Contiki에서 제공하는 Cooja 시뮬레이터를 사용하여 그 성능을 평가하고 Foren6를 활용하여 제어 메시지 수를 비교한다. 실험 결과 EC-RPL이 기존 RPL 보다 6.9% 낮은 지연시간과 5.8% 낮은 제어 메시지를 사용하며, 패킷 전달 비율은 1.7% 높은 것을 확인할 수 있다.
본 연구에서 csv포맷으로 구조화된 파일 데이터의 컬럼의 도메인을 자동 판별하는 방법을 제안한다. 데이터와 데이터 간 융합을 통해 새로운 데이터를 생성할 수 있고, 이들 새로운 데이터가 중요한 자원이 되기 위해서는 조인 되는 컬럼의 일관성이 유지되어야 한다. 데이터 품질을 측정하기 위한 방법 중의 하나가 도메인 기반 품질 진단 방법이다. 도멘인이란 각 컬럼의 성격을 규정하는 가장 광범위한 지표이므로 이를 자동으로 판별하는 방법이 필요하다. 기존의 연구에서는 관계형 데이터베이스의 도메인 자동 판별이 주로 연구 되었지만 본 연구는 파일데이터의 특성을 이용하여 도메인을 자동화 할 수 있는 모델을 개발하였다. 파일데이터의 도메인 판별을 특화하기 위하여 정규표현식을 이용하여 데이터를 단순화 하고 이를 패턴화 하였고, 컬럼명에 해당하는 데이터 헤더의 내용을 분석하여 사용된 접미사를 분석하여 파생변수로 사용하였다. 정규표현식과 접미사의 파생변수를 추가하였을 때 기존 방법인 87%의 정확도 보다 큰 95%의 정확도로 도메인을 자동 판별하는 결과를 도출하였다. 본 연구는 공공데이터 품질진단에 자동화 방법론을 제시하여 품질 측정 기간 및 인원을 줄일 수 있을 것으로 기대된다.
본 논문에서는 동적 메쉬 부/복호화 시 스케일러빌리티 기능을 지원하기 위해 SHVC의 계층적 부호화 방식을 기반으로 텍스처 맵을 압축하는 방법을 제안한다. 제안하는 방법은 고해상도 텍스처 맵을 다운샘플링하여 다해상도의 텍스처 맵을 생성하고 이를 SHVC로 부호화함으로써 효과적으로 다해상도 텍스처 맵들의 중복성을 제거한다. 동적 메쉬 복호화기에서는 수신기 성능, 네트워크 환경 등에 따라 적합한 해상도의 텍스처 맵을 복호화하여 메쉬 데이터의 스케일러빌리티를 지원할 수 있도록 한다. 제안하는 방법의 성능을 검증하기 위해 V-DMC (Video-based Dynamic Mesh Coding) 참조 소프트웨어인 TMMv1.0에 제안하는 방법을 적용하고 본 논문에서 제안하는 스케일러블 부/복호화기와 TMMv1.0 기반의 시뮬캐스트 방식의 성능을 비교하였다. 제안하는 방법은 시뮬캐스트 방법 대비 AI, LD 환경에서 Luma BD-rate (Luma PSNR)가 각각 평균 -7.7%, -5.7%의 향상된 결과를 얻어 제안하는 방법을 통해 효과적으로 동적 메쉬 데이터의 텍스처 맵 스케일러빌리티 지원이 가능함을 확인하였다.
본 연구는 인공지능에 대한 정부와 금융권의 정책 및 활용 사례를 연구하고, 금융권의 향후 정책 과제를 도출 하고자 한다. Gartner에 따르면 2022년 금융업을 이끌어가는 주목할 기술로 '생성형 AI', '자율시스템', '프라이버스 강화 컴퓨테이션(PEC)'을 선정하였다. 금융권은 인공지능, 빅데이터, 블록체인 등 신기술의 발전으로 금융 부분의 혁신을 촉진하고 있다. 코로나 팬데믹 이후 재택근무의 확산 등으로 인한 데이터의 공유, 개인정보 보호 등의 관심이 높아지면서 디지털 신기술에 대한 기업의 변화가 기대된다. 글로벌 금융권 회사들도 디지털 신기술을 활용하여 상품 개발이나 기존 업무의 관리 및 운영에 대한 프로세스 혁신을 도모하고자 IT 비용에 대한 지출을 확대하고 있다. 금융권은 디지털 신기술을 활용하여 자금세탁 방지, 업무 효율성 제고, 개인정보 보호 강화 등의 업무에 적용하고 있다. 산업 간 경계가 사라지는 빅블러의 시대에 새로운 진입자들의 도전에서 경쟁 우위를 선점하기 위해서는 금융권들이 신기술을 업무에 적극 활용해야 한다.
고해상도의 위성 영상을 이용하여 지표를 모니터링하기 위한 방법으로 분석 대상 객체의 색상을 이용하여 영상을 분류하는 방법이 널리 사용된다. 고해상도 위성영상에서는 도심 지역의 경우 건물, 도로 등과 같은 주요 객체들 이외에도 수목 등과 같은 식생 객체들도 빈번하게 나타난다. 도심 지역에 나타나는 식생 객체들의 색상은 건물, 도로, 그림자 등의 객체와 유사한 경우가 많으며, 이는 색상 정보에 기초하여 객체를 분류할 경우에 분류 성능이 저하되는 요인이 된다. 본 연구에서는 건물 등과 같은 다양한 색상을 가지는 객체뿐만 아니라 식생 객체도 정확하게 분류할 수 있는 기법을 제안한다. 제안하는 방법은 식생 객체 검출에 유용한 정규식생지수 영상을 RGB 영상과 함께 사용하고 객체 클래스를 서브 클래스로 세분화하여 분류한다. 서브 클래스 분류 결과를 융합한 후에 영상 분할 결과와 결합하여 최종 분류 결과를 생성한다. 차세대중형위성1호 영상을 이용한 실험에서 정규식생지수를 사용하지 않은 서브채널 분류 기법과 서브클래스 분류 기법의 overall accuracy가 각각 73.18%, 81.79%의 결과를 보인 반면, 정규식생지수와 서브클래스 분류를 함께 적용하여 제안한 방법은 overall accuracy가 87.42%의 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.