• Title/Summary/Keyword: 생성AI

Search Result 648, Processing Time 0.034 seconds

The Detection of Online Manipulated Reviews Using Machine Learning and GPT-3 (기계학습과 GPT3를 시용한 조작된 리뷰의 탐지)

  • Chernyaeva, Olga;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.347-364
    • /
    • 2022
  • Fraudulent companies or sellers strategically manipulate reviews to influence customers' purchase decisions; therefore, the reliability of reviews has become crucial for customer decision-making. Since customers increasingly rely on online reviews to search for more detailed information about products or services before purchasing, many researchers focus on detecting manipulated reviews. However, the main problem in detecting manipulated reviews is the difficulties with obtaining data with manipulated reviews to utilize machine learning techniques with sufficient data. Also, the number of manipulated reviews is insufficient compared with the number of non-manipulated reviews, so the class imbalance problem occurs. The class with fewer examples is under-represented and can hamper a model's accuracy, so machine learning methods suffer from the class imbalance problem and solving the class imbalance problem is important to build an accurate model for detecting manipulated reviews. Thus, we propose an OpenAI-based reviews generation model to solve the manipulated reviews imbalance problem, thereby enhancing the accuracy of manipulated reviews detection. In this research, we applied the novel autoregressive language model - GPT-3 to generate reviews based on manipulated reviews. Moreover, we found that applying GPT-3 model for oversampling manipulated reviews can recover a satisfactory portion of performance losses and shows better performance in classification (logit, decision tree, neural networks) than traditional oversampling models such as random oversampling and SMOTE.

A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering (생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법)

  • Jeong Young Sang;Ji Seung Hyun;Kwon Da Rong Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.481-492
    • /
    • 2023
  • This study explores how to build a Korean dataset to extract information from text using generative large language models. In modern society, mixed information circulates rapidly, and effectively categorizing and extracting it is crucial to the decision-making process. However, there is still a lack of Korean datasets for training. To overcome this, this study attempts to extract information using text-based zero-shot learning using a generative large language model to build a purposeful Korean dataset. In this study, the language model is instructed to output the desired result through prompt engineering in the form of "system"-"instruction"-"source input"-"output format", and the dataset is built by utilizing the in-context learning characteristics of the language model through input sentences. We validate our approach by comparing the generated dataset with the existing benchmark dataset, and achieve 25.47% higher performance compared to the KLUE-RoBERTa-large model for the relation information extraction task. The results of this study are expected to contribute to AI research by showing the feasibility of extracting knowledge elements from Korean text. Furthermore, this methodology can be utilized for various fields and purposes, and has potential for building various Korean datasets.

Development and Application of a Scenario Analysis System for CBRN Hazard Prediction (화생방 오염확산 시나리오 분석 시스템 구축 및 활용)

  • Byungheon Lee;Jiyun Seo;Hyunwoo Nam
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.3
    • /
    • pp.13-26
    • /
    • 2024
  • The CBRN(Chemical, Biological, Radiological, and Nuclear) hazard prediction model is a system that supports commanders in making better decisions by creating contamination distribution and damage prediction areas based on the weapons used, terrain, and weather information in the events of biochemical and radiological accidents. NBC_RAMS(Nuclear, Biological and Chemical Reporting And Modeling S/W System) developed by ADD (Agency for Defense Development) is used not only supporting for decision making plan for various military operations and exercises but also for post analyzing CBRN related events. With the NBC_RAMS's core engine, we introduced a CBR hazard assessment scenario analysis system that can generate contaminant distribution prediction results reflecting various CBR scenarios, and described how to apply it in specific purposes in terms of input information, meteorological data, land data with land coverage and DEM, and building data with pologon form. As a practical use case, a technology development case is addressed that tracks the origin location of contaminant source with artificial intelligence and a technology that selects the optimal location of a CBR detection sensor with score data by analyzing large amounts of data generated using the CBRN scenario analysis system. Through this system, it is possible to generate AI-specialized CBRN related to training and analysis data and support planning of operation and exercise by predicting battle field.

Real-Time Scheduling Scheme based on Reinforcement Learning Considering Minimizing Setup Cost (작업 준비비용 최소화를 고려한 강화학습 기반의 실시간 일정계획 수립기법)

  • Yoo, Woosik;Kim, Sungjae;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.15-27
    • /
    • 2020
  • This study starts with the idea that the process of creating a Gantt Chart for schedule planning is similar to Tetris game with only a straight line. In Tetris games, the X axis is M machines and the Y axis is time. It is assumed that all types of orders can be worked without separation in all machines, but if the types of orders are different, setup cost will be incurred without delay. In this study, the game described above was named Gantris and the game environment was implemented. The AI-scheduling table through in-depth reinforcement learning compares the real-time scheduling table with the human-made game schedule. In the comparative study, the learning environment was studied in single order list learning environment and random order list learning environment. The two systems to be compared in this study are four machines (Machine)-two types of system (4M2T) and ten machines-six types of system (10M6T). As a performance indicator of the generated schedule, a weighted sum of setup cost, makespan and idle time in processing 100 orders were scheduled. As a result of the comparative study, in 4M2T system, regardless of the learning environment, the learned system generated schedule plan with better performance index than the experimenter. In the case of 10M6T system, the AI system generated a schedule of better performance indicators than the experimenter in a single learning environment, but showed a bad performance index than the experimenter in random learning environment. However, in comparing the number of job changes, the learning system showed better results than those of the 4M2T and 10M6T, showing excellent scheduling performance.

Research of intelligent rhythm service of edutainment humanoid robot (에듀테인먼트 휴머노이드 로봇의 지능적인 율동 서비스 연구)

  • Yoon, Taebok;Na, Eunsuk
    • Journal of Korea Game Society
    • /
    • v.18 no.4
    • /
    • pp.75-82
    • /
    • 2018
  • With the development of information and communication technology, various methods have been tried to provide learners with a fun educational environment through fun and interest. It is a good example to utilize technologies such as games and robots in education for edutainment and game-based learning. In this study, we propose an intelligent rhythm education system using user data collection and analysis for humanoid robot rhythm generation. To do this, the user selects music and inputs rhythm information according to the selected music. The robot utilization data of this user extracts patterns through collection and analysis. Patterns are based on frequency, and FFT similarity comparison method is applied when past data is insufficient. The proposed method is validated through experiments of kindergarten children.

Solving the Monkey and Banana Problem Using DNA Computing (DNA 컴퓨팅을 이용한 원숭이와 바나나 문제 해결)

  • 박의준;이인희;장병탁
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.2
    • /
    • pp.15-25
    • /
    • 2003
  • The Monkey and Banana Problem is an example commonly used for illustrating simple problem solving. It can be solved by conventional approaches, but this requires a procedural aspect when inferences are processed, and this fact works as a limitation condition in solving complex problems. However, if we use DNA computing methods which are naturally able to realize massive parallel processing. the Monkey and Banana Problem can be solved effectively without weakening the fundamental aims above. In this paper, we design a method of representing the problem using DNA molecules, and show that various solutions are generated through computer-simulations based on the design. The simulation results are obviously interesting in that these are contrary to the fact that the Prolog program for the Monkey and Banana Problem, which was implemented from the conventional point of view, gives us only one optimal solution. That is, DNA computing overcomes the limitations of conventional approaches.

  • PDF

A Model Using IOT Based Railway Infrastructure Sensor Data for Recognition of Abnormal state (IOT기반 철도인프라 데이터를 활용한 이상상황 인식모델)

  • Jang, Gyu-JIn;Ahn, Tae-Ki;Kim, Young-Nam;Jung, Jae-Young
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.771-773
    • /
    • 2018
  • 인공지능(AI), 사물인터넷(IoT)등의 4차 산업기술은 철도안전의 핵심수단으로 부상하고 있으며 차량, 위험관리, 운행관리, 보안관리 등의 점진적인 적용분야 확장을 통해 철도안전에 대한 신뢰성을 향상시킬 수 있는 방안에 대한 관심이 집중되고 있다. 본 논문에서는 IoT 기반의 다양한 철도인프라 데이터를 활용하여 열차주행상태에 영향을 줄 수 있는 이상상황 인식 모델 및 열차자율주행을 위한 제어기술에 필요한 정보로 인프라 상태를 제공하는 방식을 제안한다. 철도 인프라 상황인지에 필요한 데이터는 레일온도, 선로 지정물, 승객 수, 선로 적설량을 지정하였고, 제안 인식모델의 스게노 퍼지추론 방식을 적용한 후 철도차량 운전관련 취급규정 및 취급세척을 기반으로 퍼지규칙(Fuzzy Rule)을 15개 생성하였다. 인프라데이터셋을 활용하여 제안모델의 인식률 평가에 사용하였으며 인식률 결과는 약 86%의 정확성을 보였다. 퍼지추론 기반 방식의 철도인프라 이상상태 인식모델을 철도분야에 접목시킨다면 기존의 관제기반 방식보다 효율적인 철도인프라 상황인식이 가능할 것으로 판단된다.

Graph-based Mixed Heuristics for Effective Planning (효율적인 계획생성을 위한 그래프 기반의 혼합 휴리스틱)

  • Park, Byungjoon;Kim, Wantae;Kim, Hyunsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.3
    • /
    • pp.27-37
    • /
    • 2021
  • Highly informative heuristics in AI planning can help to a more efficient search a solutions. However, in general, to obtain informative heuristics from planning problem specifications requires a lot of computational effort. To address this problem, we propose a Partial Planning Graph(PPG) and Mixed Heuristics for solving planning problems more efficiently. The PPG is an improved graph to be applied to can find a partial heuristic value for each goal condition from the relaxed planning graph which is a means to get heuristics to solve planning problems. Mixed Heuristics using PPG requires size of each graph is relatively small and less computational effort as a partial plan generated for each goal condition compared to the existing planning graph. Mixed Heuristics using PPG can find partial interactions for each goal conditions in an effective way, then consider them in order to estimate the goal state heuristics. Therefore Mixed Heuristics can not only find interactions for each goal conditions more less computational effort, but also have high accuracy of heuristics than the existing max and additive heuristics. In this paper, we present the PPG and the algorithm for computing Mixed Heuristics, and then explain analysis to accuracy and the efficiency of the Mixed Heuristics.

Ai-Based Cataract Detection Platform Develop (인공지능 기반의 백내장 검출 플랫폼 개발)

  • Park, Doyoung;Kim, Baek-Ki
    • Journal of Platform Technology
    • /
    • v.10 no.1
    • /
    • pp.20-28
    • /
    • 2022
  • Artificial intelligence-based health data verification has become an essential element not only to help clinical research, but also to develop new treatments. Since the US Food and Drug Administration (FDA) approved the marketing of medical devices that detect mild abnormal diabetic retinopathy in adult diabetic patients using artificial intelligence in the field of medical diagnosis, tests using artificial intelligence have been increasing. In this study, an artificial intelligence model based on image classification was created using a Teachable Machine supported by Google, and a predictive model was completed through learning. This not only facilitates the early detection of cataracts among eye diseases occurring among patients with chronic diseases, but also serves as basic research for developing a digital personal health healthcare app for eye disease prevention as a healthcare program for eye health.

Synthetic Infra-Red Image Dataset Generation by CycleGAN based on SSIM Loss Function (SSIM 목적 함수와 CycleGAN을 이용한 적외선 이미지 데이터셋 생성 기법 연구)

  • Lee, Sky;Leeghim, Henzeh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.476-486
    • /
    • 2022
  • Synthetic dynamic infrared image generation from the given virtual environment is being the primary goal to simulate the output of the infra-red(IR) camera installed on a vehicle to evaluate the control algorithm for various search & reconnaissance missions. Due to the difficulty to obtain actual IR data in complex environments, Artificial intelligence(AI) has been used recently in the field of image data generation. In this paper, CycleGAN technique is applied to obtain a more realistic synthetic IR image. We added the Structural Similarity Index Measure(SSIM) loss function to the L1 loss function to generate a more realistic synthetic IR image when the CycleGAN image is generated. From the simulation, it is applicable to the guided-missile flight simulation tests by using the synthetic infrared image generated by the proposed technique.