• Title/Summary/Keyword: 생성AI

Search Result 649, Processing Time 0.028 seconds

AI Crime Prediction Modeling Based on Judgment and the 8 Principles (판결문과 8하원칙에 기반한 인공지능 범죄 예측 모델링)

  • Hye-sung Jung;Eun-bi Cho;Jeong-hyeon Chang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • In the 4th industrial revolution, the field of criminal justice is paying attention to Legaltech using artificial intelligence to provide efficient legal services. This paper attempted to create a crime prediction model that can apply Recurrent Neural Network(RNN) to increase the potential for using legal technology in the domestic criminal justice field. To this end, the crime process was divided into pre, during, and post stages based on the criminal facts described in the judgment, utilizing crime script analysis techniques. In addition, at each time point, the method and evidence of crime were classified into objects, actions, and environments based on the sentence composition elements and the 8 principles of investigation. The case summary analysis framework derived from this study can contribute to establishing situational crime prevention strategies because it is easy to identify typical patterns of specific crime methods. Furthermore, the results of this study can be used as a useful reference for research on generating crime situation prediction data based on RNN models in future follow-up studies.

Confucius's reflections in the Analects of Confucius - Consideration on overall implications and modern values (논어에 나타난 공자의 성찰-총체적 함의와 현대적 가치에 대한 고찰)

  • Jeum-Nam, Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.105-111
    • /
    • 2023
  • The purpose of this study is to find out what self-reflection, relationship reflection, gratitude and happiness reflection, and social reflection among the sayings of Confucius in the Analects of Confucius are reinterpreted in various ways depending on the times and what meaning they contain today. Self-reflection is the process of considering one's identity, values, emotions, thoughts, and actions. Humans grow through reflection because they can identify their own problems, acknowledge their mistakes, find opportunities for improvement, and set a direction for the future. Confucius pursued the life of a gentleman as a person who constantly reflects on his life and grows. We classified it into the four categories presented above and examined them. In an era of coexistence with generative AI, Confucius' reflective life and teachings are recognized as important values in modern society in terms of human-centered value orientation, mature human relationships, and continuous social value realization, and reflection on happiness is the best attitude to life.

Research on a statistics education program utilizing deep learning predictions in high school mathematics (고등학교 수학에서 딥러닝 예측을 이용한 통계교육 프로그램 연구)

  • Hyeseong Jin;Boeuk Suh
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.209-231
    • /
    • 2024
  • The education sector is undergoing significant changes due to the Fourth Industrial Revolution and the advancement of artificial intelligence. Particularly, the importance of education based on artificial intelligence is being emphasized. Accordingly, the purpose of this study is to develop a statistics education program using deep learning prediction in high school mathematics and to examine the impact of such statistically problem-solvingcentered statistics education programs on high school students' statistical literacy and computational thinking. To achieve this goal, a statistics education program using deep learning prediction applicable to high school mathematics was developed. The analysis revealed that students' understanding of context improved through experiencing how data was generated and collected. Additionally, they enhanced their comprehension of data variability while exploring and analyzing various datasets. Moreover, they demonstrated the ability to critically analyze data during the process of validating its reliability. In order to analyze the impact of the statistics education program on high school students' computational thinking, a paired sample t-test was conducted, confirming a statistically significant difference in computational thinking between before and after classes (t=-11.657, p<0.001).

An Efficient Matrix Multiplier Available in Multi-Head Attention and Feed-Forward Network of Transformer Algorithms (트랜스포머 알고리즘의 멀티 헤드 어텐션과 피드포워드 네트워크에서 활용 가능한 효율적인 행렬 곱셈기)

  • Seok-Woo Chang;Dong-Sun Kim
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2024
  • With the advancement of NLP(Natural Language Processing) models, conversational AI such as ChatGPT is becoming increasingly popular. To enhance processing speed and reduce power consumption, it is important to implement the Transformer algorithm, which forms the basis of the latest natural language processing models, in hardware. In particular, the multi-head attention and feed-forward network, which analyze the relationships between different words in a sentence through matrix multiplication, are the most computationally intensive core algorithms in the Transformer. In this paper, we propose a new variable systolic array based on the number of input words to enhance matrix multiplication speed. Quantization maintains Transformer accuracy, boosting memory efficiency and speed. For evaluation purposes, this paper verifies the clock cycles required in multi-head attention and feed-forward network and compares the performance with other multipliers.

Effects of Monascus-Fermented Korean Red Ginseng Powder on the Contents of Serum Lipid and Tissue Lipid Peroxidation in Alcohol Feeding Rats (알코올 급여 흰쥐의 혈청 지질 및 조직 과산화지질 농도에 미치는 홍국발효홍삼분말의 영향)

  • Cha, Jae-Young;Ahn, Hee-Young;Eom, Kyung-Eun;Park, Bo-Kyung;Jun, Bang-Sil;Park, Jin-Chul;Lee, Chi-Hyeong;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.983-993
    • /
    • 2009
  • The effects of Monascus-fermented Korean red ginseng (MFRG) on the contents of serum lipids and tissues lipid peroxidation was investigated in alcohol feeding rats (AC group). Serum contents of total lipid and free fatty acid in alcohol feeding rats were significantly increased, but these increases tended to decrease in the AMFRG group. Serum triglyceride content was also significantly decreased in the AMFRG group compared to other groups. Serum content of total-cholesterol was significantly increased in AC group compared to normal control (NC) group, whereas there was no significant difference between the AC and AMFRG groups. Content of HDL-cholesterol in serum was slightly increased in the AC group compared to the NC group, but this increase in the AC group was more significantly increased in the AMFRG group. At the same time, atherogenic index (AI) was also significantly decreased in the AMFRG group compared to the AC group. Contents of thiobarbituric acid reactive substances (TBARS) in the liver, heart, spleen and testes were significantly increased in the AC group compared to the NC group, but these increases were significantly less in the AMFRG group. Contents of liver nonheme ion was increased in the AC group and was significantly decreased in the AMFRG group, which suggested that lipid peroxidation contents are inversely correlated with liver nonheme ion content. Hepatic glutathione concentration was significantly decreased in the AC group, but this content was significantly increased in the AMFRG group and it showed the antioxidant abilities of glutathione. These results suggested that Monascus-fermented Korea red ginseng has anti-atherogenic index (AI) effects as well as antioxidative activities through reduced tissue oxidative stress in alcohol feeding rats.

Enhancing the performance of the facial keypoint detection model by improving the quality of low-resolution facial images (저화질 안면 이미지의 화질 개선를 통한 안면 특징점 검출 모델의 성능 향상)

  • KyoungOok Lee;Yejin Lee;Jonghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • When a person's face is recognized through a recording device such as a low-pixel surveillance camera, it is difficult to capture the face due to low image quality. In situations where it is difficult to recognize a person's face, problems such as not being able to identify a criminal suspect or a missing person may occur. Existing studies on face recognition used refined datasets, so the performance could not be measured in various environments. Therefore, to solve the problem of poor face recognition performance in low-quality images, this paper proposes a method to generate high-quality images by performing image quality improvement on low-quality facial images considering various environments, and then improve the performance of facial feature point detection. To confirm the practical applicability of the proposed architecture, an experiment was conducted by selecting a data set in which people appear relatively small in the entire image. In addition, by choosing a facial image dataset considering the mask-wearing situation, the possibility of expanding to real problems was explored. As a result of measuring the performance of the feature point detection model by improving the image quality of the face image, it was confirmed that the face detection after improvement was enhanced by an average of 3.47 times in the case of images without a mask and 9.92 times in the case of wearing a mask. It was confirmed that the RMSE for facial feature points decreased by an average of 8.49 times when wearing a mask and by an average of 2.02 times when not wearing a mask. Therefore, it was possible to verify the applicability of the proposed method by increasing the recognition rate for facial images captured in low quality through image quality improvement.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF

A Study on the Restoration of Korean Traditional Palace Image by Adjusting the Receptive Field of Pix2Pix (Pix2Pix의 수용 영역 조절을 통한 전통 고궁 이미지 복원 연구)

  • Hwang, Won-Yong;Kim, Hyo-Kwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.360-366
    • /
    • 2022
  • This paper presents a AI model structure for restoring Korean traditional palace photographs, which remain only black-and-white photographs, to color photographs using Pix2Pix, one of the adversarial generative neural network techniques. Pix2Pix consists of a combination of a synthetic image generator model and a discriminator model that determines whether a synthetic image is real or fake. This paper deals with an artificial intelligence model by adjusting a receptive field of the discriminator, and analyzes the results by considering the characteristics of the ancient palace photograph. The receptive field of Pix2Pix, which is used to restore black-and-white photographs, was commonly used in a fixed size, but a fixed size of receptive field is not suitable for a photograph which consisting with various change in an image. This paper observed the result of changing the size of the existing fixed a receptive field to identify the proper size of the discriminator that could reflect the characteristics of ancient palaces. In this experiment, the receptive field of the discriminator was adjusted based on the prepared ancient palace photos. This paper measure a loss of the model according to the change in a receptive field of the discriminator and check the results of restored photos using a well trained AI model from experiments.

A Study on Next-Generation Data Protection Based on Non File System for Spreading Smart Factory (스마트팩토리 확산을 위한 비파일시스템(None File System) 기반의 차세대 데이터보호에 관한 연구)

  • Kim, Seungyong;Hwang, Incheol;Kim, Dongsik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.176-183
    • /
    • 2021
  • Purpose: The introduction of smart factories that reflect the 4th industrial revolution technologies such as AI, IoT, and VR, has been actively promoted in Korea. However, in order to solve various problems arising from existing file-based operating systems, this research will focus on identifying and verifying non-file system-based data protection technology. Method: The research will measure security storage that cannot be identified or controlled by the operating system. How to activate secure storage based on the input of digital key values. Establish a control unit that provides input and output information based on BIOS activation. Observe non-file-type structure so that mapping behavior using second meta-data can be performed according to the activation of the secure storage. Result: First, the creation of non-file system-based secure storage's data input/output were found to match the hash function value of the sample data with the hash function value of the normal storage and data. Second, the data protection performance experiments in secure storage were compared to the hash function value of the original file with the hash function value of the secure storage after ransomware activity to verify data protection performance against malicious ransomware. Conclusion: Smart factory technology is a nationally promoted technology that is being introduced to the public and this research implemented and experimented on a new concept of data protection technology to protect crucial data within the information system. In order to protect sensitive data, implementation of non-file-type secure storage technology that is non-dependent on file system is highly recommended. This research has proven the security and safety of such technology and verified its purpose.

SIEM System Performance Enhancement Mechanism Using Active Model Improvement Feedback Technology (능동형 모델 개선 피드백 기술을 활용한 보안관제 시스템 성능 개선 방안)

  • Shin, Youn-Sup;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.896-905
    • /
    • 2021
  • In the field of SIEM(Security information and event management), many studies try to use a feedback system to solve lack of completeness of training data and false positives of new attack events that occur in the actual operation. However, the current feedback system requires too much human inputs to improve the running model and even so, those feedback from inexperienced analysts can affect the model performance negatively. Therefore, we propose "active model improving feedback technology" to solve the shortage of security analyst manpower, increasing false positive rates and degrading model performance. First, we cluster similar predicted events during the operation, calculate feedback priorities for those clusters and select and provide representative events from those highly prioritized clusters using XAI (eXplainable AI)-based event visualization. Once these events are feedbacked, we exclude less analogous events and then propagate the feedback throughout the clusters. Finally, these events are incrementally trained by an existing model. To verify the effectiveness of our proposal, we compared three distinct scenarios using PKDD2007 and CSIC2012. As a result, our proposal confirmed a 30% higher performance in all indicators compared to that of the model with no feedback and the current feedback system.