• Title/Summary/Keyword: 생성 AI 콘텐츠

Search Result 59, Processing Time 0.023 seconds

Players Adaptive Monster Generation Technique Using Genetic Algorithm (유전 알고리즘을 이용한 플레이어 적응형 몬스터 생성 기법)

  • Kim, Ji-Min;Kim, Sun-Jeong;Hong, Seokmin
    • Journal of Internet Computing and Services
    • /
    • v.18 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • As the game industry is blooming, the generation of contents is far behind the consumption of contents. With this reason, it is necessary to afford the game contents considering level of game player's skill. In order to effectively solve this problem, Procedural Content Generation(PCG) using Artificial Intelligence(AI) is one of the plausible options. This paper proposes the procedural method to generate various monsters considering level of player's skill using genetic algorithm. One gene consists of the properties of a monster and one genome consists of genes for various monsters. A generated monster is evaluated by battle simulation with a player and then goes through selection and crossover steps. Using our proposed scheme, players adaptive monsters are generated procedurally based on genetic algorithm and the variety of monsters which are generated with different number of genome is compared.

Developing Programming Education Software with Generative AI (생성형 인공지능을 활용한 프로그래밍 교육 소프트웨어 개발)

  • Do-hyeon Choi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.589-595
    • /
    • 2023
  • Artificial intelligence(AI) is spurring advancements in EdTech, the merger of technology and education. This includes the creation of effective learning materials and personalized student experiences. Our study focuses on developing a programming education software that employs state-of-the-art generative AI. Our software also includes prompts optimized for programming code analysis, which are based on the well-known ChatGPT API. Furthermore, the necessary functions for acquiring programming skills were created with a user interface and developed as a question-and-answer template function based on an AI chatbot. The objective of this study is to guide the development of educational programmes that make use of generative AI.

An Exploratory Study on Advertising Copywriting Using ChatGPT - With the focus on in-depth interviews with college students majoring in advertising - (ChatGPT를 활용한 광고카피라이팅에 대한 탐색적 연구 - 광고전공 대학생 심층면접을 중심으로-)

  • Chung, Hae Won;Cho, Woo Ri
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.751-757
    • /
    • 2024
  • This study evaluates the effectiveness of advertising copywriting using the artificial intelligence language model, ChatGPT, and explores its potential applications and limitations within the advertising industry. We established five key research questions and conducted in-depth focus group interviews (FGI) with university students in Busan. The findings reveal that there was no significant preference difference between copies written by ChatGPT and human copywriters. However, ChatGPT's copies were particularly effective in age-targeted advertising but showed limitations in gender targeting and reflecting cultural contexts. Additionally, consumer acceptance of AI copywriting was generally positive, though concerns were raised about the creativity and naturalness of AI-generated copies. This research provides practical insights into how AI can be utilized in advertising content creation and stimulates discussion on the appropriate use of AI technology and ethical considerations within the industry. These results offer important implications for both advertising professionals and the academic community.

Annotation Method for Reliable Video Data (신뢰성 영상자료를 위한 어노테이션 기법)

  • Yun-Hee Kang;Taeun Kwon
    • Journal of Platform Technology
    • /
    • v.12 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • With the recent increase in the use of artificial intelligence, AI TRiSM data management within organizations has become important, and thus securing data reliability has emerged as an essential requirement for data-based decision-making. Digital content is transmitted through the unreliable Internet to the cloud where the digital content storage is located, then used in various applications. When detecting anomaly of data, it is difficult to provide a function to check content modification due to its damage in digital content systems. In this paper, we design a technique to guarantee the reliability of video data by expanding the function of data annotation. The designed annotation technique constitutes a prototype based on gRPC to handle a request and a response in a webUI that generates classification label and Merkle tree of given video data.

  • PDF

Exploring Factors to Minimize Hallucination Phenomena in Generative AI - Focusing on Consumer Emotion and Experience Analysis - (생성형AI의 환각현상 최소화를 위한 요인 탐색 연구 - 소비자의 감성·경험 분석을 중심으로-)

  • Jinho Ahn;Wookwhan Jung
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • This research aims to investigate methods of leveraging generative artificial intelligence in service sectors where consumer sentiment and experience are paramount, focusing on minimizing hallucination phenomena during usage and developing strategic services tailored to consumer sentiment and experiences. To this end, the study examined both mechanical approaches and user-generated prompts, experimenting with factors such as business item definition, provision of persona characteristics, examples and context-specific imperative verbs, and the specification of output formats and tone concepts. The research explores how generative AI can contribute to enhancing the accuracy of personalized content and user satisfaction. Moreover, these approaches play a crucial role in addressing issues related to hallucination phenomena that may arise when applying generative AI in real services, contributing to consumer service innovation through generative AI. The findings demonstrate the significant role generative AI can play in richly interpreting consumer sentiment and experiences, broadening the potential for application across various industry sectors and suggesting new directions for consumer sentiment and experience strategies beyond technological advancements. However, as this research is based on the relatively novel field of generative AI technology, there are many areas where it falls short. Future studies need to explore the generalizability of research factors and the conditional effects in more diverse industrial settings. Additionally, with the rapid advancement of AI technology, continuous research into new forms of hallucination symptoms and the development of new strategies to address them will be necessary.

A Survey on Deep Neural Networks for 3D Reconstruction from a 2D Image (단일 이미지 기반 3D 모델 생성을 위한 딥-뉴럴 네트워크 분류 및 성능비교)

  • Kim, MinGeyung;Choi, Yoo-Joo
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.715-718
    • /
    • 2022
  • 단일 이미지로부터 3D 모델을 생성하는 방법은 메타버스와 가상현실 콘텐츠에 대한 필요성이 높아짐에 따라, 보다 효율적인 모델 생성방법으로서 관심이 높아지고 있다. 본 논문에서는 단일 이미지로부터 3D 모델을 자동 생성하는 기존 딥-뉴럴 네트워크들을 대상으로, 생성되는 3D 모델의 유형에 따라 기존 네트워크들을 분류하고, 주요 딥-뉴럴 네트워크의 형태와 특징, 그리고 모델 생성의 성능을 분석하고자 한다.

Artificial Intelligence-Based Video Content Generation (인공지능 기반 영상 콘텐츠 생성 기술 동향)

  • Son, J.W.;Han, M.H.;Kim, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.34-42
    • /
    • 2019
  • This study introduces artificial intelligence (AI) techniques for video generation. For an effective illustration, techniques for video generation are classified as either semi-automatic or automatic. First, we discuss some recent achievements in semi-automatic video generation, and explain which types of AI techniques can be applied to produce films and improve film quality. Additionally, we provide an example of video content that has been generated by using AI techniques. Then, two automatic video-generation techniques are introduced with technical details. As there is currently no feasible automatic video-generation technique that can generate commercial videos, in this study, we explain their technical details, and suggest the future direction for researchers. Finally, we discuss several considerations for more practical automatic video-generation techniques.

음성 합성과 동작 인식 기술을 활용한 CLOVA Dubbing과 Avatar 서비스

  • Bae, Sun-Min
    • Broadcasting and Media Magazine
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • 코로나로 인해 사회는 급속한 변화를 겪고 있고, 그 변화의 중심에는 온라인 플랫폼 기업과 서비스가 있다. AI 기술의 발전 속도는 여전히 가속되고 있고, 특히 음성 합성과 실시간 동작 인식, 아바타 생성 기술은 콘텐츠 생성 및 비대면 서비스에서 그 활용이 더욱 기대된다.

Exploring the Perceived Value of Generative AI and the Determinants of Continuous Use Intention (생성형 인공지능(Generative AI)에 대한 지각된 가치와 지속이용의도 결정요인 탐색)

  • Su-Ji Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.709-720
    • /
    • 2024
  • By inputting consumer satisfaction as an exogenous variable into the value-based adoption model, this study explored the factors that influence the user's intention to continue using image-centered generative AI. Briefly presenting the main results, first, enjoyment did not significantly affect perceived value, but usefulness had a positive effect on perceived value. Second, Fee and technicality had a negative effect on perceived value. Third, perceived value had a positive effect on consumer satisfaction and continuous use intention. Fourth, consumer satisfaction had a positive effect on continuous use intention. Based on the above results, it is important to recognize the usefulness of image-centered generated AI and enjoyment in the process of use in order to increase the user's intention to continue using image-centered generated AI, and at the same time, it will be important to increase the user's perceived value and satisfaction by minimizing the reasonable fee and complexity in the method of use at the level acceptable to the users.

A Study on Image Quality Improvement for 3D Pagoda Restoration (3D 탑복원을 위한 화질 개선에 관한 연구)

  • Kim, Beom Jun-Ji;Lee, Hyun-woo;Kim, Ki-hyeop;Kim, Eun-ji;Kim, Young-jin;Lee, Byong-Kwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.145-147
    • /
    • 2022
  • 본 논문에서는 훼손되어 식별할 수 없는 탑 이미지를 비롯해 낮은 해상도의 탑 이미지를 개선하기 위해 우리는 탑 이미지의 화질 개선을 인공지능을 이용하여 빠르게 개선을 해 보고자 한다. 최근에 Generative Adversarial Networks(GANS) 알고리즘에서 SrGAN 알고리즘이 나오면서 이미지 생성, 이미지 복원, 해상도 변화 분야가 지속해서 발전하고 있다. 이에 본 연구에서는 다양한 GAN 알고리즘을 화질 개선에 적용해 보았다. 탑 이미지에 GAN 알고리즘 중 SrGan을 적용하였으며 실험한 결과 Srgan 알고리즘은 학습이 진행되었으며, 낮은 해상도의 탑 이미지가 높은 해상도, 초고해상도 이미지가 생성되는 것을 확인했다.

  • PDF