Annual Conference on Human and Language Technology
/
2021.10a
/
pp.597-601
/
2021
주어진 정보를 자연어로 변환하는 작업은 대화 시스템의 핵심 모듈임에도 불구하고 학습 데이터의 제작 비용이 높아 공개된 데이터가 언어에 따라 부족하거나 없다. 이에 본 연구에서는 텍스트-투-그래프(text-to-graph) 작업인 관계 추출에 쓰이는 데이터의 입출력을 반대로 지정하여 그래프-투-텍스트(graph-to-text) 생성 작업에 이용하는 역 관계 추출(reverse relation extraction, RevRE) 기법을 소개한다. 이 기법은 학습 데이터의 양을 늘려 영어 그래프-투-텍스트 작업의 성능을 높이고 지식 묘사 데이터가 부재한 한국어에선 데이터를 재생성한다.
Mobile device can get useful user information, because users have always this device. In this paper, we propose automatically story generation method and user topic extraction using user information in mobile environment. Proposed method is follows: (1) We collect user action information in mobile device. Then, (2) we extract topics from collected information. (3) For the results of (2), we determine episodes for one day. Then, (4) we generate sentences using sentence templates and we compose stories which have theme-based or time-based. Because proposed method is simpler than previous method, proposed method can work only in mobile device. There's no room to leak user information. And proposed method is expressed more informative than previous method, because proposed method is provided sentence-based result. Extracted user-topic, a result of our method, can use to analyze user action and user preference.
본 논문에서는 지능형 로봇 시스템에서 신경 회로망을 이용한 인간 몸의 제스처 추출 기법을 제안 하였다. 지능형 로봇 시스템에서 사용된 컴퓨터 시각 기반에서는 시간상의 변화에 따른 특징 벡터 추출을 필요로 한다. 이를 위해 본 논문에서는 신경 회로망을 이용한 제스처 추출 기법을 제안 하였다. 신경 회로망을 이용한 제스처 추출은 오류 역 전파 학습방법을 사용하여 시간상에서 변화하는 영상 시퀀스에 정보를 생성하고 움직임 모델을 통해 두 정보간의 따른 제스처 추출에 가중치를 준다. 마지막으로 본 연구에서 제안한 기법은 실험을 통해 그 우수성을 확인하였다.
In this paper, we propose vector-based face generation system that uses montage and shading method and preserves designer(artist)'s style. Proposed system generates character's face similar to human face automatically using facial features that extracted from a photograph. In addition, unlike previous face generation system that uses contours, we propose the system is based on color and composes face from facial features and shade extracted from a photograph. Thus, it has advantages that can make more realistic face similar to human face. Since this system is vector-based, the generated character's face has no size limit and constraint. Therefore it is available to transform the shape freely and to apply various facial expressions to 2D face. Moreover, it has distinctiveness with another approaches in point that can keep artist's impression just as it is in result.
In this paper, we propose a loitering detection using trajectory probability distribution and local direction descriptor for intelligent surveillance system. We use a background modeling method for detecting moving object and extract the motion features from each moving object for making feature vectors. After that, we detect the loitering behavior person using K-Nearest Neighbor classifier. We test the proposed method in real world environment and it can achieve real time and robust detection results.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.190-192
/
2002
데이터 웨어하우스는 기업의 의사 결정을 지원하기 위해 기업의 운영 데이터베이스로부터 추출한 데이터의 집합으로써 OLAP 분석에 이용된다. OLAP은 데이터에 대한 다양한 분석을 위해 이들 데이터를 다차원 데이터 모델로 표현하고 이를 활용하여 복잡한 질의 처리 및 다차원 데이터 분석에 이용한다. 이러한 OLAP의 다차원 데이터를 관계형 데이터베이스에서 표현하기 위해 스타 스키마가 널리 사용된다. 지금까지의 데이터 웨어하우스는 일반적으로 ER 도형으로 설계된 소스 데이터로부터 스타 스키마를 설계하고 구축하였다. 하지만, 최근 인터넷의 급성장으로 인해 차세대 웹 문서의 표준인 XML을 통한 인터넷 상의 문서 전송 및 정보 교환이 활발해 지고 있으며, XML 문서에 대한 다차원적인 분석이 요구됨에 따라 데이터 웨어하우스는 XML 문서로부터의 스타 스키마 설계 및 저장이 필요하게 되었다. 따라서 본 논문에서는 XML DTD로부터 애트리뷰트 트리를 생성하여 스타 스키마를 설계하고 이 DTD를 따르는 XML 문서에서 스타 스키마의 인스턴스를 추출하여 관계형 데이터베이스에 저장하기 위한 XML2Star 알고리즘을 개발하였다. 이것을 통해 기업 및 사용자는 OLAP에서 XML 기반의 스타 스키마를 이용한 다차원적인 분석이 가능하게 된다.
Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.553-555
/
2001
기업형 정보 시스템을 개발하는 데 클라이언트 계층, 어플리케이션 서버 계층, 데이터베이스 계층으로 구성된 3계층 아키텍쳐가 널리 사용되고 있다. 따라서 기업형 컴포넌트의 올바른 행위를 시험하기 위해서는 3계층 아키텍처를 고려한 시험 기법이 요구된다. 하지만 기존의 대부분의 컴포넌트 시험 기법들은 클라이언트 계층과 어플리케이션 서버 계층 사이의 관계만을 대상으로 하고 있어서 기업형 컴포넌트 시험에 부족하다. 논문에서는 기업형 컴포넌트의 시험을 위해 클라이언트 계층과 어플리케이션 서버계층 간의 관계만이 아니라 어플리케이션 서버계층과 데이터베이스 서버계층과의 관계를 포함한 시험 기법을 제안한다. 이를 위해 3계층 아키텍쳐를 반영하는 시험모델을 제안했으며 UML/OCL를 컴포넌트의 명세로 사용하여 시험모델을 추출한 뒤 자동으로 시험을 수행하는 시험 환경을 개안했다. 제안된 시험 환경은 일반적인 시험 단계의 뒷부분으로 테스트 케이스를 분석하여 생성하는 것보다는 생성된 시험 사료를 수행시켜 자동으로 시험 과정을 수행하는데 관심을 두고 있다. 제안된 시험환경은 기존의 연구와 달리 3계층 아키텍처를 반영하고 산업체 표준인 UML/OCL을 이용하므로 기업형 응용프로그램의 생산성을 증가시켜 줄 것으로 보인다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.269-274
/
2023
질의응답 (Question Answering)은 주어진 질문을 이해하여 그에 맞는 답변을 생성하는 자연어 처리 분야의 핵심적인 기계 독해 작업이다. 현재 대다수의 자연어 이해 작업은 사전학습 언어 모델에 미세 조정 (finetuning)하는 방식으로 학습되고, 질의응답 역시 이러한 방법으로 진행된다. 하지만 미세 조정을 통한 전이학습은 사전학습 모델의 크기가 커질수록 전이학습이 잘 이루어지지 않는다는 단점이 있다. 게다가 많은 양의 파라미터를 갱신한 후 새로운 가중치들을 저장하여야 한다는 용량의 부담이 존재한다. 본 연구는 최근 대두되는 deep prompt tuning 방법론을 한국어 추출형 질의응답에 적용하여, 미세 조정에 비해 학습시간을 단축시키고 적은 양의 파라미터를 활용하여 성능을 개선했다. 또한 한국어 추출형 질의응답에 최적의 prompt 길이를 최적화하였으며 오류 분석을 통한 정성적인 평가로 deep prompt tuning이 모델 예측에 미치는 영향을 조사하였다.
Proceedings of the Korean Information Science Society Conference
/
1999.10a
/
pp.522-524
/
1999
절차지향 소프트웨어를 객체지향 소프트웨어로 변환하는 여러 가지 방법이 존재한다. 프로그램을 변환하기 위하여 일반적으로 함수, 변수와 자료형들 간의 관계를 이용한다. 이들간의 관계성을 이용하면 결과로서 객체 후보가 생성된다. 생성된 객체 후보와 영역 전문가에 의하여 생성된 영역 모델을 비교하여 두 모델간의 유사성을 측정하여야 한다. 본 논문에서는 클래스의 시그너처(클래스 이름, 속성의 이름, 속성의 자료형, 메소드 이름, 메소드의 리턴형, 메소드 파라미터의 자료형)을 이용하여 클래스와 객체 후보의 유사도를 측정하고, 측정된 유사도의 평균값을 이용하여 객체 후보군의 유사도를 측정한다. 기존의 연구 방법과는 다르게 n개의 클래스와 m개의 객체 후보사이의 구문적 측면의 유사도 측정뿐만이 아니라 의미적 측면의 유사도를 측정하는 방법을 제시하여 최적합 객체 후보군을 추출하도록 하였다.
Park, Kyoung-Hyun;Park, Sung-Hee;Park, Jeong-Seok;Ryu, Keun-Ho
Proceedings of the Korea Information Processing Society Conference
/
2000.10a
/
pp.101-104
/
2000
XML이 인터넷을 기반으로 하는 정보교환의 매개체로써 다양한 응용분야로 확산됨에 따라 XML 데이터로부터 구조정보를 추출하고 효율적으로 저장하며 관계형 데이터베이스로부터 추출된 데이터를 XML 문서로 생성하는 시스템이 요구되어진다. 기존의 관계형 데이터베이스 벤더들이 XML을 처리하기 위해 시스템을 확장하기는 하지만 이러한 시스템들은 시스템과 플랫폼에 종속적이라는 단점을 가지고 있다. 이 논문에서는 이러한 문제점을 해결함과 동시에 DTD와 관계형 스키마가 존재하지 않는 환경에서 XML문서를 효율적으로 저장하고 XML_QL을 지원하는 Amoeba 시스템을 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.