• Title/Summary/Keyword: 생성형 모델

Search Result 811, Processing Time 0.033 seconds

Design and Implementation of XQuery processor using Relational Technologies (관계형 데이터베이스 환경에서의 XQuery Processor 설계 및 구현)

  • Jung, Min-Kyoung;Hong, Dong-Kweon
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.23-26
    • /
    • 2005
  • XML이 발표되면서 대용량의 XML을 효과적으로 관리하는 여러 가지 방법들이 연구되고 있다. 특히 지금까지 상업적, 기술적으로 성공적이고 안정된 데이터 모델인 관계형 데이터베이스를 활용하는 여러 가지 방법들이 연구되고 있다. 본 논문은 관계형 DBMS를 사용하여 XML 질의어인 XQuery를 SQL로 변환하여 처리하는 효율적인 방법을 제안한다. 우선 본 논문에서 제안하는 방식은 XML문서를 분할하여 관계형 테이블에 저장하는 분할방식을 사용하며, 분할된 관계형 테이블을 이용하여 XPath를 포함한 XQuery의 기능을 실행하는 SQL을 생성하여 관계형 DBMS에서 SQL을 실행하는 방식을 사용한다. 제안한 XQuery 처리방식은 먼저 XQuery의 구문 분석을 통하여 AST(Abstract Syntax Tree)를 생성하고, AST를 순회하면서 SQL문장을 생성한다. 생성된 SQL문장은 XML 문서의 경로를 사용함으로써 XQuery 연산의 조인 횟수를 감소시키며, 각 노드마다 부여된 순서 정보를 효과적으로 사용하여 문서의 원래 순서에 맞는 XML 부분을 생성하는 방법을 제시한다. 그리고 실제 제안된 시스템을 개발하여 그 성능을 평가한다.

  • PDF

Controllable data augmentation framework based on multiple large-scale language models (복수 대규모 언어 모델에 기반한 제어 가능형 데이터 증강 프레임워크)

  • Hyeonseok Kang;Hyuk Namgoong;Jeesu Jung;Sangkeun Jung
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.3-8
    • /
    • 2023
  • 데이터 증강은 인공지능 모델의 학습에서 필요한 데이터의 양이 적거나 편향되어 있는 경우, 이를 보완하여 모델의 성능을 높이는 데 도움이 된다. 이미지와는 달리 자연어의 데이터 증강은 문맥이나 문법적 구조와 같은 특징을 고려해야 하기 때문에, 데이터 증강에 많은 인적자원이 소비된다. 본 연구에서는 복수의 대규모 언어 모델을 사용하여 입력 문장과 제어 조건으로 프롬프트를 구성하는 데 최소한의 인적 자원을 활용한 의미적으로 유사한 문장을 생성하는 방법을 제안한다. 또한, 대규모 언어 모델을 단독으로 사용하는 것만이 아닌 병렬 및 순차적 구조로 구성하여 데이터 증강의 효과를 높이는 방법을 제안한다. 대규모 언어 모델로 생성된 데이터의 유효성을 검증하기 위해 동일한 개수의 원본 훈련 데이터와 증강된 데이터를 한국어 모델인 KcBERT로 다중 클래스 분류를 수행하였을 때의 성능을 비교하였다. 다중 대규모 언어 모델을 사용하여 데이터 증강을 수행하였을 때, 모델의 구조와 관계없이 증강된 데이터는 원본 데이터만을 사용하였을 때보다 높거나 그에 준하는 정확도를 보였다. 병렬 구조의 다중 대규모 언어 모델을 사용하여 400개의 원본 데이터를 증강하였을 때에는, 원본 데이터의 최고 성능인 0.997과 0.017의 성능 차이를 보이며 거의 유사한 학습 효과를 낼 수 있음을 보였다.

  • PDF

Authoring System for Open Educational Contents based on SCORM (SCORM 기반 개방형 교육용 컨텐츠 저작 시스템)

  • 서대우;윤경배;김남용;진영배;왕창종
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.836-838
    • /
    • 2003
  • 이 논문에서는 SCORM을 지원하는 교육용 컨텐츠 저작 시스템을 설계하고 구현하였다. 이 시스템은 영역 모델, 항해 모델, 추상인터페이스 모델, 애셋 모델 등 4개의 모델로 구성하였으며, 컨텐츠의 구성을 다이어그램으로 표현할 수 있는 표기법을 지원한다. 이 시스템은 저작 모듈과 실행 모듈로 구성되어 있으며, 저작 모들에서 생성된 각 명세서는 국제적인 교육용 컨텐츠 표준인 ADL SCORM XML 코드를 자동으로 생성하고 실행 모듈과 웹 서버를 통해 서비스된다.

  • PDF

A study on Korean multi-turn response generation using generative and retrieval model (생성 모델과 검색 모델을 이용한 한국어 멀티턴 응답 생성 연구)

  • Lee, Hodong;Lee, Jongmin;Seo, Jaehyung;Jang, Yoonna;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Recent deep learning-based research shows excellent performance in most natural language processing (NLP) fields with pre-trained language models. In particular, the auto-encoder-based language model proves its excellent performance and usefulness in various fields of Korean language understanding. However, the decoder-based Korean generative model even suffers from generating simple sentences. Also, there is few detailed research and data for the field of conversation where generative models are most commonly utilized. Therefore, this paper constructs multi-turn dialogue data for a Korean generative model. In addition, we compare and analyze the performance by improving the dialogue ability of the generative model through transfer learning. In addition, we propose a method of supplementing the insufficient dialogue generation ability of the model by extracting recommended response candidates from external knowledge information through a retrival model.

3D Face Model Texturing Using Panorama Image Stitching (파노라마 이미지 스티칭 기술을 이용한 3차원 얼굴 모델 텍스쳐링 기법)

  • Cho, Kwang-Hyeon;Kim, Gye-Young;Choi, Hyung-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.47-49
    • /
    • 2011
  • 본 논문에서는 사용자의 정면, 측면 영상을 이용하여 3차원 얼굴 모델에 적합한 텍스쳐 맵을 생성, 이를 이용하여 3차원 얼굴 모델을 생성하는 방법을 제안한다. 기존 3차원 얼굴 모델은 매핑 할 텍스쳐 영상들을 하나로 통합하여 이를 원통형 좌표계를 통해 텍스쳐링 하는 방법이 이용되고 있다. 이때 정면과 측면의 영상을 3차원 얼굴 모델의 중심축을 기준으로 계산하여 좌표에 맞게 투영시키고 통합 및 보간하여 텍스쳐링 하게 된다. 사용자는 이를 위하여 정면과 측면 영상을 원통형 좌표에 맞게 통합시키는 작업이 필요하다. 본 논문은 사용자에게 수반되는 이러한 작업을 줄이고 발생될 수 있는 텍스쳐의 왜곡을 최소화하기 위한 방법을 제시한다. 2차원 정면 측면 이미지를 3차원 얼굴모델에 투영시키고 정면과 측면을 구분하여 각 텍스쳐 간 경계 부분을 자연스럽게 처리하기 위해 파노라마 이미지 스티칭 기술을 이용하여 텍스쳐링 한 뒤 얼굴 모델을 생성하는 방법에 대해서 기술한다.

  • PDF

Methodology for Constructing Data for Automatic Generation of Emotional Copywrite (감성적 광고 카피 자동 생성을 위한 데이터 구축 방법론)

  • Jimin Seong;Haeun Shin;Jiyoon Kang
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.336-341
    • /
    • 2023
  • 초대규모 언어모델의 뛰어난 생성 기술이 실질적인 부분에서 많은 도움을 주고 있음에도 불구하고 사람들의 마음을 움직일 수 있는 매력적인 광고 카피를 생성하기에는 아쉬운 점이 많다. 이 연구는 효과적인 광고 카피 자동생성을 위한 데이터 구축 방법론 연구로, 데이터에 일관적으로 학습시킬 수 있는 감성적 카피의 문체적 특징을 프레임워크로 정의하고 이를 모델에 적용한 결과를 보여 데이터 설계 방법론의 유효성을 검증하고자 하였다. 실험 결과 문체 적합성 측면에서 성공적인 결과를 확인한 것에 비해, 한국어 보조사와 같이 미세한 어감 차이를 발생시키는 요소나 의미적 중의성 해석 등의 고차원적인 한국어 구사능력을 필요로 하는 부분에서 생성모델의 개선 여지를 발견할 수 있었다. 본 연구에서 보인 감성형 카피 생성을 위한 프레임워크는 마케팅 실무에서도 유용하게 사용될 수 있을 뿐만 아니라, 고객 세그멘테이션 분석이 이루어진다면 타깃 고객의 취향을 고려한 효과적이고 맞춤화된 광고 카피를 생성에 기여할 수 있을 것으로 기대된다.

  • PDF

Intelligent Shape Analysis of the 3D Hippocampus Using Support Vector Machines (SVM을 이용한 3차원 해마의 지능적 형상 분석)

  • Kim, Jeong-Sik;Kim, Yong-Guk;Choi, Soo-Mi
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1387-1392
    • /
    • 2006
  • 본 논문에서는 SVM (Support Vector Machine)을 기반으로 하여 인체의 뇌 하부구조인 해마에 대한 지능적 형상분석 방법을 제공한다. 일반적으로 의료 영상으로부터 해마의 형상 분석을 하기 위해서는 충분한 임상 데이터를 필요로 한다. 하지만 현실적으로 많은 양의 표본들을 얻는 것이 쉽지 않기 때문에 전문가의 지식을 기반으로 한 작업이 수반되어야 한다. 결국 이러한 요소들이 분석 작업을 어렵게 한다. 의학 기술이 복잡해 지면서 최근의 형상 분석 연구는 점차 통계적 모델을 기반으로 진행되고 있다. 본 연구에서는 해마로부터 고해상도의 매개변수형 모델을 만들어 형상 표현으로 이용하고, 집단간 분류 작업에 SVM 알고리즘을 적용하는 지능적 분석 방법을 구현한다. 우선 메쉬 데이터로부터 물리변형모델 기반의 매개변수 모델을 구축하고, PDM (point distribution model) 방법을 적용하여 두 집단을 대표하는 평균 모델을 생성한다. 마지막으로 SVM 기반의 이진 분류기를 구축하여 집단간 분류 작업을 수행한다. 구현한 모델링 방법과 분류기의 성능을 평가하기 위하여 본 연구에서는 네 가지 커널 함수 (linear, radial basis function, polynomial, sigmoid)들을 적용한다. 본 논문에서 제시한 매개변수형 모델은 다양한 형태의 의료 데이터로부터 보편적인 3차원 모델을 생성하고, 또한 모델의 전역적, 국부적인 특징들을 복합적으로 표현할 수 있기 때문에 통계적 형상분석에 적합하다. 그리고 SVM 기반의 분류기는 적은 수의 학습 데이터로부터 정상인 해마 집단과 간질 환자 집단간의 정확한 분류를 가능하게 한다.

  • PDF

Generation of Open City Information Model for Disaster Prevention (방재업무 활용을 위한 개방형 도시정보모델 생성)

  • Park, Sang Il;Song, Min Sun;Jang, Young-Hoon;Seo, Kyung-Wan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • Clear understanding and related information management of geography and city facilities are the fundamental approach to prevent city disaster. In order to accomplish the service to prevent city disaster effectively, there needs to be a consistent framework for data collection, to build models, and to manage information. In this study, the authors proposed standardized city information modeling process and application concept to use information model for service of preventing city disaster in information management standpoint. The study was conducted on the process of classification and necessary attributes to manage city facilities effectively considering disaster related information. Additionally, the study suggested the methods for building an open city information model based on an integrated data schema, CityGML. Finally, through the implementation of sample model, the study confirmed city information modeling methodology and applicability for service of disaster prevention.

KFREB: Korean Fictional Retrieval-based Evaluation Benchmark for Generative Large Language Models (KFREB: 생성형 한국어 대규모 언어 모델의 검색 기반 생성 평가 데이터셋)

  • Jungseob Lee;Junyoung Son;Taemin Lee;Chanjun Park;Myunghoon Kang;Jeongbae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.9-13
    • /
    • 2023
  • 본 논문에서는 대규모 언어모델의 검색 기반 답변 생성능력을 평가하는 새로운 한국어 벤치마크, KFREB(Korean Fictional Retrieval Evaluation Benchmark)를 제안한다. KFREB는 모델이 사전학습 되지 않은 허구의 정보를 바탕으로 검색 기반 답변 생성 능력을 평가함으로써, 기존의 대규모 언어모델이 사전학습에서 보았던 사실을 반영하여 생성하는 답변이 실제 검색 기반 답변 시스템에서의 능력을 제대로 평가할 수 없다는 문제를 해결하고자 한다. 제안된 KFREB는 검색기반 대규모 언어모델의 실제 서비스 케이스를 고려하여 장문 문서, 두 개의 정답을 포함한 골드 문서, 한 개의 골드 문서와 유사 방해 문서 키워드 유무, 그리고 문서 간 상호 참조를 요구하는 상호참조 멀티홉 리즈닝 경우 등에 대한 평가 케이스를 제공하며, 이를 통해 대규모 언어모델의 적절한 선택과 실제 서비스 활용에 대한 인사이트를 제공할 수 있을 것이다.

  • PDF