• 제목/요약/키워드: 생성적 적대적 네트워크

검색결과 38건 처리시간 0.024초

적대적 사례 생성 기법 동향 (A Study on generating adversarial examples)

  • 오유진;김현지;임세진;서화정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.580-583
    • /
    • 2021
  • 인공지능이 발전함에 따라 그에 따른 보안의 중요성이 커지고 있다. 딥러닝을 공격하는 방법 중 하나인 적대적 공격은 적대적 사례를 활용한 공격이다. 이 적대적 사례를 생성하는 대표적인 4가지 기법들에는 기울기 손실함수을 활용하는 FGSM, 네트워크에 쿼리를 반복하여 공격하는 Deepfool, 입력과 결과에 대한 맵을 생성하는 JSMA, 잡음과 원본 데이터의 상관관계에 기반한 공격인 CW 기법이 있다. 이외에도 적대적 사례를 생성하는 다양한 연구들이 진행되고 있다. 그 중에서도 본 논문에서는 FGSM기반의 ABI-FGM, JSMA 기반의 TJSMA, 그 외에 과적합을 줄이는 CIM, DE 알고리즘에 기반한 One pixel 등 최신 적대적 사례 생성 연구에 대해 살펴본다.

무선 네트워크 환경에서의 생성적 적대 신경망 기반 이동성 예측 모델 (Generative Adversarial Network based Mobility Prediction Model in Wireless Network)

  • 장보윤;;김문성;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.168-171
    • /
    • 2020
  • 초저지연성을 요구하는 5G 네트워크 환경에서 기기의 핸드오버를 능동적으로 조절하는 시스템의 중요성이 대두되고 있으며, 특히 핸드오버 시 기기의 이동성을 예측하는 것은 필수적이다. 딥러닝 모델의 일종인 생성적 적대 신경망은 두 신경망 사이의 경쟁 구도를 이용하여 두 신경망의 성능을 모두 높이는 목적으로 사용된다. 본 논문에서는 주로 데이터 생성 모델로 사용되는 생성적 적대 신경망을 이용하여 무선 네트워크 환경에서 기기의 이동성을 예측하는 시스템을 개발하였다. 이를 통해 실제 모바일 네트워크 환경에 적용되었을 경우 핸드오버 속도를 높이도록 한다.

R2와 어텐션을 적용한 유넷 기반의 영상 간 변환에 관한 연구 (Image-to-Image Translation Based on U-Net with R2 and Attention)

  • 임소현;전준철
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.9-16
    • /
    • 2020
  • 영상 처리 및 컴퓨터 비전 분야에서 하나의 영상을 통해 다른 영상으로 재구성하거나 새로운 영상을 생성하는 문제는 하드웨어의 발전에 따라 꾸준히 주목받고 있다. 그러나 컴퓨터를 통해 생성한 이미지를 사람의 눈으로 바라봤을 때 자연스럽지 않다는 문제 또한 계속해서 대두되고 있다. 최근 딥러닝 분야에 대한 연구가 활발히 진행됨에 따라 이를 활용한 영상 생성 및 개선 문제 또한 활발히 연구되고 있으며 그 중에서도 적대적 생성 신경망(Generative Adversarial Network)이라는 네트워크가 영상 생성 분야에 있어 좋은 결과를 보이고 있다. 적대적 생성 신경망이 제안된 이후 이를 기반으로 하는 다양한 네트워크가 제시됨에 따라 영상 생성 분야에서 더 자연스러운 영상을 생성하는 것이 가능해졌다. 그 중 pix2pix은 조건 적대적 생성 신경망 모델로 다양한 데이터셋에서도 좋은 성능을 보이는 범용적인 네트워크이다. pix2pix는 U-Net을 기반으로 두고 있으나 U-Net을 기반으로 하는 네트워크 중에서는 더 좋은 성능을 보이는 네트워크가 다수 존재한다. 때문에 본 연구에서는 pix2pix의 U-Net에 다양한 네트워크를 적용해 영상을 생성하고 그 결과를 상호 비교 평가한다. 각 네트워크를 통해 생성된 영상을 통해 기존의 U-Net을 사용한 pix2pix 모델보다 어텐션, R2, 어텐션-R2 네트워크를 적용한 pix2pix 모델이 더 좋은 성능을 보이는 것을 확인하고 그 중 가장 성능이 뛰어난 네트워크의 한계점을 향후 연구로 제시한다.

딥뉴럴네트워크 상에 신속한 오인식 샘플 생성 공격 (Rapid Misclassification Sample Generation Attack on Deep Neural Network)

  • 권현;박상준;김용철
    • 융합보안논문지
    • /
    • 제20권2호
    • /
    • pp.111-121
    • /
    • 2020
  • 딥뉴럴네트워크는 머신러닝 분야 중 이미지 인식, 사물 인식 등에 좋은 성능을 보여주고 있다. 그러나 딥뉴럴네트워크는 적대적 샘플(Adversarial example)에 취약점이 있다. 적대적 샘플은 원본 샘플에 최소한의 noise를 넣어서 딥뉴럴네트워크가 잘못 인식하게 하는 샘플이다. 그러나 이러한 적대적 샘플은 원본 샘플간의 최소한의 noise을 주면서 동시에 딥뉴럴네트워크가 잘못 인식하도록 하는 샘플을 생성하는 데 시간이 많이 걸린다는 단점이 있다. 따라서 어떠한 경우에 최소한의 noise가 아니더라도 신속하게 딥뉴럴네트워크가 잘못 인식하도록 하는 공격이 필요할 수 있다. 이 논문에서, 우리는 신속하게 딥뉴럴네트워크를 공격하는 것에 우선순위를 둔 신속한 오인식 샘플 생성 공격을 제안하고자 한다. 이 제안방법은 원본 샘플에 대한 왜곡을 고려하지 않고 딥뉴럴네트워크의 오인식에 중점을 둔 noise를 추가하는 방식이다. 따라서 이 방법은 기존방법과 달리 별도의 원본 샘플에 대한 왜곡을 고려하지 않기 때문에 기존방법보다 생성속도가 빠른 장점이 있다. 실험데이터로는 MNIST와 CIFAR10를 사용하였으며 머신러닝 라이브러리로 Tensorflow를 사용하였다. 실험결과에서, 제안한 오인식 샘플은 기존방법에 비해서 MNIST와 CIFAR10에서 각각 50%, 80% 감소된 반복횟수이면서 100% 공격률을 가진다.

적대적 생성 신경망을 통한 얼굴 비디오 스타일 합성 연구 (Style Synthesis of Speech Videos Through Generative Adversarial Neural Networks)

  • 최희조;박구만
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권11호
    • /
    • pp.465-472
    • /
    • 2022
  • 본 연구에서는 기존의 동영상 합성 네트워크에 스타일 합성 네트워크를 접목시켜 동영상에 대한 스타일 합성의 한계점을 극복하고자 한다. 본 논문의 네트워크에서는 동영상 합성을 위해 스타일갠 학습을 통한 스타일 합성과 동영상 합성 네트워크를 통해 스타일 합성된 비디오를 생성하기 위해 네트워크를 학습시킨다. 인물의 시선이나 표정 등이 안정적으로 전이되기 어려운 점을 개선하기 위해 3차원 얼굴 복원기술을 적용하여 3차원 얼굴 정보를 이용하여 머리의 포즈와 시선, 표정 등의 중요한 특징을 제어한다. 더불어, 헤드투헤드++ 네트워크의 역동성, 입 모양, 이미지, 시선 처리에 대한 판별기를 각각 학습시켜 개연성과 일관성이 더욱 유지되는 안정적인 스타일 합성 비디오를 생성할 수 있다. 페이스 포렌식 데이터셋과 메트로폴리탄 얼굴 데이터셋을 이용하여 대상 얼굴의 일관된 움직임을 유지하면서 대상 비디오로 변환하여, 자기 얼굴에 대한 3차원 얼굴 정보를 이용한 비디오 합성을 통해 자연스러운 데이터를 생성하여 성능을 증가시킴을 확인했다.

딥뉴럴네트워크에서의 적대적 샘플에 관한 앙상블 방어 연구 (Detecting Adversarial Example Using Ensemble Method on Deep Neural Network)

  • 권현;윤준혁;김준섭;박상준;김용철
    • 융합보안논문지
    • /
    • 제21권2호
    • /
    • pp.57-66
    • /
    • 2021
  • 딥뉴럴네트워크는 이미지 인식, 음성 인식, 패턴 인식 등에 좋은 성능을 보여주고 있는 대표적인 딥러닝모델 중에 하나이다. 하지만 이러한 딥뉴럴네트워크는 적대적 샘플을 오인식하는 취약점이 있다. 적대적 샘플은 원본 데이터에 최소한의 노이즈를 추가하여 사람이 보기에는 이상이 없지만 딥뉴럴네트워크가 잘못 인식 하게 하는 샘플을 의미한다. 이러한 적대적 샘플은 딥뉴럴네트워크를 활용하는 자율주행차량이나 의료사업에서 차량 표지판 오인식이나 환자 진단의 오인식을 일으키면 큰 사고가 일어나기 때문에 적대적 샘플 공격에 대한 방어연구가 요구된다. 본 논문에서는 여러 가지 파라미터를 조절하여 적대적 샘플에 대한 앙상블 방어방법을 실험적으로 분석하였다. 적대적 샘플의 생성방법으로 fast gradient sign method, DeepFool method, Carlini & Wanger method을 이용하여 앙상블 방어방법의 성능을 분석하였다. 실험 데이터로 MNIST 데이터셋을 사용하였으며, 머신러닝 라이브러리로는 텐서플로우를 사용하였다. 실험방법의 각 파라미터들로 3가지 적대적 샘플 공격방법, 적정기준선, 모델 수, 랜덤노이즈에 따른 성능을 분석하였다. 실험결과로 앙상블 방어방법은 모델수가 7이고 적정기준선이 1일 때, 적대적 샘플에 대한 탐지 성공률 98.3%이고 원본샘플의 99.2% 정확도를 유지하는 성능을 보였다.

Intrusion Detection System을 회피하고 Physical Attack을 하기 위한 GAN 기반 적대적 CAN 프레임 생성방법 (GAN Based Adversarial CAN Frame Generation Method for Physical Attack Evading Intrusion Detection System)

  • 김도완;최대선
    • 정보보호학회논문지
    • /
    • 제31권6호
    • /
    • pp.1279-1290
    • /
    • 2021
  • 차량 기술이 성장하면서 운전자의 개입이 필요 없는 자율주행까지 발전하였고, 이에 따라 차량 내부 네트워크인 CAN 보안도 중요해졌다. CAN은 해킹 공격에 취약점을 보이는데, 이러한 공격을 탐지하기 위해 기계학습 기반 IDS가 도입된다. 하지만 기계학습은 높은 정확도에도 불구하고 적대적 예제에 취약한 모습을 보여주었다. 본 논문에서는 IDS를 회피할 수 있도록 feature에 잡음을 추가하고 또한 실제 차량의 physical attack을 위한 feature 선택 및 패킷화를 진행하여 IDS를 회피하고 실제 차량에도 공격할 수 있도록 적대적 CAN frame 생성방법을 제안한다. 모든 feature 변조 실험부터 feature 선택 후 변조 실험, 패킷화 이후 전처리하여 IDS 회피실험을 진행하여 생성한 적대적 CAN frame이 IDS를 얼마나 회피하는지 확인한다.

생성적 적대 네트워크를 활용한 텍스트와 스케치 기반 이미지 생성 기법 (Image Generation based on Text and Sketch with Generative Adversarial Networks)

  • 이제훈;이동호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.293-296
    • /
    • 2018
  • 생성적 적대 네트워크를 활용하여 텍스트, 스케치 등 다양한 자원으로부터 이미지를 생성하기 위한 연구는 활발하게 진행되고 있으며 많은 실용적인 연구가 존재한다. 하지만 기존 연구들은 텍스트나 스케치 등 각 하나의 자원을 통해 이미지를 생성하기 때문에 설명이 부족한 텍스트, 실제 이미지와 상이한 스케치와 같이 자원의 정보가 불완전한 경우에는 제대로 된 이미지를 생성하지 못한다는 한계가 있다. 본 논문에서는 기존 연구의 한계점올 극복하기 위해 텍스트와 스케치 두 개의 자원을 동시에 활용하여 이미지를 생성하는 새로운 생성 기법 TS-GAN 을 제안한다. TS-GAN 은 두 단계로 이루어져 있으며 각 단계를 통해 더욱 사실적인 이미지를 생성한다. 본 논문에서 제안한 기법은 컴퓨터 비전 분야에서 많이 활용되는 CUB 데이터세트를 사용하여 이미지 생성 결과의 우수성을 보인다.

계층별 모델 역추론 공격 (Layer-wise Model Inversion Attack)

  • 권현호;김한준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.69-72
    • /
    • 2024
  • 모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.

생성적 적대 네트워크를 이용한 감성인식 학습데이터 자동 생성 (Automatic Generation of Training Corpus for a Sentiment Analysis Using a Generative Adversarial Network)

  • 박천용;최용석;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.389-393
    • /
    • 2018
  • 딥러닝의 발달로 기계번역, 대화 시스템 등의 자연언어처리 분야가 크게 발전하였다. 딥러닝 모델의 성능을 향상시키기 위해서는 많은 데이터가 필요하다. 그러나 많은 데이터를 수집하기 위해서는 많은 시간과 노력이 소요된다. 본 연구에서는 이미지 생성 모델로 좋은 성능을 보이고 있는 생성적 적대 네트워크(Generative adverasarial network)를 문장 생성에 적용해본다. 본 연구에서는 긍/부정 조건에 따른 문장을 자동 생성하기 위해 SeqGAN 모델을 수정하여 사용한다. 그리고 분류기를 포함한 SeqGAN이 긍/부정 감성인식 학습데이터를 자동 생성할 수 있는지 실험한다. 실험을 수행한 결과, 분류기를 포함한 SeqGAN 모델이 생성한 문장과 학습데이터를 혼용하여 학습할 경우 실제 학습데이터만 학습 시킨 경우보다 좋은 정확도를 보였다.

  • PDF