• Title/Summary/Keyword: 생성가스

Search Result 1,661, Processing Time 0.028 seconds

Coal Gasification using Catalyst in a Fluidized Bed Reactor (유동층 반응기에서 촉매를 이용한 석탄 가스화반응 특성)

  • 이운재;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.129-132
    • /
    • 1995
  • 상압의 유동층반응기 (0.1 m-i.d x 1.6 m-high) 에서 호주탄을 수증기와 공기를 사용하여 가스화 하였다. 또한 반응기에서 촉매효과를 고찰하기 위해 $K_2$SO$_4$+Ni(NO$_3$)$_2$ 촉매를 호주탄에 담지하여 가스화반응을 수행하였다. 생성가스조성, 생성가스량, 탄소전환율, cold gas efficiency 및 발열량 등에 대한 유동화속도 (2~5U$_{mf}$), 반응온도 (750~90$0^{\circ}C$), 공기/석탄 비 (1.6~3.2), 수증기/석탄 비 (0.63~l.26)의 영향을 조사하였다. 탄소전환율, 생성 가스량, 생성가스 발열량 및 cold gas efficiency 는 유동화속도와 반응온도의 증가에 따라 증가하였다. 공기/석탄 비가 증가함에 따라 탄소전환율과 생성가스량 및 cold gas efficiency 는 증가하지만 생성가스 발열량은 감소하였다. 수증기/석탄 비의 증가에 따라 발열량, cold gas efficiency 및 생성가스량은 증가하였으며, 탄소 전환율은 거의 일정하였다. 촉매 가스화반응에서 유동화속도, 반응온도, 공기/석탄 비 및 수증기/석탄 비의 증가에 따라 탄소 전환 율, 생성가스량, 생성가스 발열량 및 cold gas efficiency 는 크게 향상됨을 알 수 있었다.

  • PDF

Product distribution of rapid devolatilization of pulverized coal (미분탄의 고속열분해시 생성물 분포해석)

  • Park, Hoyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.76.2-76.2
    • /
    • 2011
  • 석탄의 탄종별 열분해 생성물은 석탄가스화기의 뮬레이션 기법의 첫 번째 단계이며 이러한 탄종별 생성물 예측은 가스화기의 성능, 즉 가스화기 출구 가스조성, 탄소전환율, 냉가스 전환율등을 예측하는데 있어 가장 기본적이고 중요한 절차이다. 본 논문에서는 석탄가스화기내 열분해 과정을 모사할 수 있도록 석탄 성상과 가스화기 운전압력에 따라 탄종별 고온고압 열분해시의 생성물을 정량적으로 계산하는 방법을 제시하였다. Merrick(1983)의 방법을 기반으로 석탄의 성상(공업/원소분석치), 가스화기 운전압력과 몇가지 상관관계식으로부터 고온고압하 열분해 생성물을 계산하는 방법이며 이를 프로그램화하여 가스화기 시뮬레이터용 모듈로 구성할 수 있도록 하였다. 또한, 국내 수입 5개 탄종에 대하여 열분해 생성물의 조성을 구하였으며 이를 상용 열분해모델의 결과와 서로 비교하였다. 열분해 생성물 조성의 분포는 다른 상용 프로그램 결과와 부합하였으며 생성물의 발열량도 원탄의 발열량과 적합한 결과를 보여주었다.

  • PDF

Coal gasification and A new IGCC system (석탄가스화와 새로운 IGCC 시스템)

  • Kim, Hyun-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.361-363
    • /
    • 2008
  • 탄소 개질반응은 $1200^{\circ}C$(도1) 이상에서 모든 탄화물질과 수분 또는 $CO_2$ 사이에서 흡열/환원반응이 일어나서 합성가스를 생성한다. 개질반응로는 산화반응로와 연결되어, 수소가스와 CO 가스의 혼합인,합성가스가 산화반응로 내에서 산소가스와 연소하여 열과 $H_2O+CO_2$를 생성하여 환원 반응로 내로 유입되어, 환원 반응로를 $1200^{\circ}C$ 이상으로 유지하고, $H_2O$$CO_2$는 석탄 속의 모든 탄소를 CO로 개질한다(도2). 동시에 수소가스가 생성되어 합성가스를 생성하게 된다. 석탄 속의 비탄소 물질인 슬래그(Slag)는 개질로 내에 남게 되는데, 개질로를 슬래그 융점(non-fluid point) 이하에서 고체상태로 포집함으로서 Fly-ash로 처리된다. 개질로 내의 온도를 $1200{\sim}1300^{\circ}C$(석탄 슬래그 융점)로 유지함으로서 개질반응이 지속되어 합성가스가 생성된다. IGCC 시스템에서는 합성가스를 가스터빈 속에서 $O_2E가스와 연소하여 고온의 가스를 생성하여 터빈을 가동해 발전을 하고 배출가스를 $1500{\sim}1700^{\circ}C$에서 배출한다. 재래식 IGCC(도4)에서는 ${\sim}1500^{\circ}C$의 배출가스를 열교환 시스템에 의해 증기를 생성하여 Steam turbine(증기터빈)을 가동하여 추가 전력을 생산했다. 그러나 본 시스템에서는 배출가스(증기와 $CO_2E 가스)를 위의 개질로에 유입하여 개질로 온도를 $1200{\sim}1300^{\circ}C$로 유지함으로서 더 많은 합성가스를 생성 하게 된다(도3). 이렇게 하여 Oxidation-reduction cycle을 형성하게 된다. 새로운 IGCC 시스템에서 가스 터빈의 배출가스가 석탄 개질로에 연결되고 석탄개질로의 합성가스 출구가 가스터빈의 가스 입구에 연결됨으로서,외부에너지 주입 없이 지속 가능한 가스화 반응과 터빈 사이클(Cycle)을 완성하여 IGCC 시스템의 석탄 열효율을 1단계 상승시켰다. 이렇게 설계된 석탄가스화기는 Lurgi형 석탄가스화 기와 달리 석탄개질반응의 효율을 높일 수 있고, 슬래그 처리가 간단하기 때문에 석탄가스화기가 소형화 될 수 있으며 슬래그(Slag)용융에 따른 석탄가스화기의 외벽손상을 피할 수 있다.

  • PDF

A Study on the Combustion Characteristics of Fuel Gas and Their Interchangability (연료 가스의 연소특성 및 호환성에 관한 연구)

  • 김형택;이성룡
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.174-180
    • /
    • 1999
  • 본 연구는 여러 종류의 연소가스들의 연소 특성변수를 판단하여 각 가스들 간의 교체 가능성을 조사하는 것을 목적으로 하고 있다. 천연가스, 메탄가스, IGCC 생성가스의 연소특성, 즉 역화, 비화, 및 황염형성을 분제 버너를 이용하여 판단하였고, 실험 데이터는 연소 다이어그램 상에서 이론 공기량 분률과 입열로 표현하였다. 실험 결과, 메탄은 천연가스와 아무런 운전조건의 변화없이 호환가능하나, 천연가스를 IGCC 생성가스로 치환하고자 할 경우는 화염 안정으로 인하여 버너의 운전변수를 조절하여야만 한다. 이러한 연구결과는 다양한 산지에 따른 각종 천연가스들의 교체가능성 및 타 연료와의 호환가능성을 판단하는 기초자료로 사용될 수 있다.

  • PDF

Coal Gasification characteristics in an Internally Circulating Fluidized bed (내부순환유동층에서의 석탄 가스화 반응 특성)

  • 김용전;이종민;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.15-18
    • /
    • 1995
  • 내경 0.1 m, 높이 0.9 m 의 draft tube 를 갖는 직경 0.3 m, 높이 2.7 m 인 내부순환유동층가스화 반응기에서 생성가스분리대를 설치하여 가스화구역에서 생성된 생성가스를 분리하여 중열량가스를 얻었다. 석탄공급량 4.3 - 8.6 kg/hr, $O_2$/C 의 비 0.25 - 0.35, $H_2O$/C 의 비 0.75 - 1.35 의 조업변수 변화조건에서 생성가스의 조성과 발열량이 측정되었다. 반응 온도가 증가함에따라 H$_2$ 와 CO가 증가하고 $CO_2$$N_2$는 감소하여 생성가스 발열량이 10 - 11.5 MJ/㎥ 으로 증가하였다.

  • PDF

Syngas Production from Biomass Using a Downdraft Fixed-bed Gasifier (하향류식 고정층 바이오매스 가스화기를 이용환 합성가스 생성특성 연구)

  • Yoon, Sang-Jun;Choi, Young-Chan;Kim, Yong-Gu;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.594-597
    • /
    • 2007
  • 바이오매스를 이용한 분산형 발전 및 에너지화의 경우 기존의 연소법은 단순 열에너지의 이용과 스팀터빈을 이용하는 대규모 시설이 요구된다. 반면 가스화의 경우 가연성 합성가스 생성을 통하여 소규모 분산형 발전이 가능하며, 생성가스를 이용하여 다양한 응용이 가능하다. 기존 상향류식 가스화의 경우의 바이오매스 가스화시 목질계 내 리그닌 성분으로 인하여 다량의 타르가 발생하여 후단 처리 설비에 어려움이 있다. 본 연구에서는 하향류식 가스화 방법을 통하여 목질계 바이오매스의 가스화 특성을 알아보았다. 가스화기 하부로 배출되는 합성가스의 온도는 대략 1000$^{\cdot}C$까지 유지할 수 있었으며, 생성되는 합성가스의 발열량은 약 $1300kcal/Nm^3$의 수준으로 얻을 수 있었다. 또한 발생되는 타르는 $5{\sim}15ppm$ 정도로 기존 상향류식에 비해 매우 적은양의 타르가 발생함을 확인할 수 있었다.

  • PDF

Investigation of Gas Hydrate Crystallization and Structure Analysis by $^{13}C$ NMR with Surfactant (계면활성제 첨가에 따른 가스하이드레이트 생성 결정과 $^{13}C$ NMR 구조 분석 고찰)

  • Cho, Byoung-Hak;Lee, Young-Chul;Shin, Myung-Uk;Lee, Sung-Han
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.395-398
    • /
    • 2006
  • 동일한 조건에서 순수한 물과 계면활성제인 DBS(dodecyl bezebe sulfonic acid) 25ppm을 첨가한 물에 대해 천연가스 하이드레이트를 제조시 가스의 함유량은 각각 80배와 160배로 2배의 차이가 발생한다. 이에 대해 본 연구에서는 결정 생성 형태의 관찰 및 $^{13}C$ NMR을 사용한 분광학적 구조 분석으로부터 이의 원인을 찾고자 하였다. 순수한 물과 DBS를 미량 함유한 물을 사용하여 whiskery 결정을 생성시킨 결과, 순수한 물을 사용한 경우보다 섬유 다발 형태가 매우 활발한 형태의 결정 형태로 가스하이드 레이트가 생성됨을 알 수 있었다. 또한 400MHz의 NMR을 사용한 분광학적 구조 분석으로부터 천연가스하이드레이트는 구조-I과 구조-II가 혼재된 결정 구조를 이루고 있음을 알 수 있었다. 또한 DBS를 함유한 물에 의해 제조된 천연가스하이드레이트는 arge cage를 많이 생성시키는 역할을 하는 분석 결과를 보였고 이것이 가스 함유량을 증대시키는 원인 중의 하나임을 알 수 있었다.

  • PDF

Carbon Monoxide Consumption in Digestate and its Potential Applications (혐기성 소화액에서 일산화탄소 소비특성 분석과 그 활용 방안)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • Acetogen과 같은 일부 혐기성미생물은 소위 acetyl-CoA 경로에 의해 아세트산, 에탄올, 그리고 몇 가지 생화학 물질을 생산한다. 이 경로에서는 일산화탄소를 기질로 이용할 수 있다. 일산화탄소 이외에 수소가 이용될 수 있다. 즉 이들 미생물은 독립영양생물로서 이산화탄소와 태양광에너지를 이용하는 녹색식물과 비유될 수 있으며, 일산화탄소는 탄소원으로서 동시에 에너지원으로서 이용된다. 본 연구에서는 혐기성 소화액 중 아세트산을 생성하는 미생물이 존재한다고 가정하고, 일산화탄소와 수소가 주 가연성분인 합성가스를 공급하면 추가의 메탄이 생성가능성을 평가하였다. 혐기성 소화과정에서 발생되는 메탄은 주로 아세트산으로부터 만들어지므로 일산화탄소를 공급하는 경우 추가로 메탄이 생성될 것으로 추측할 수 있기 때문이다. 이를 확인하기 위하여 현재 운영중인 바이오가스 생산 설비로부터 얻은 혐기성 소화액을 생물반응조에 넣은 후, 합성가스를 순환-공급하여 가스 생산량의 변화 및 조성을 분석하였다. 질소가스를 공급한 대조구와는 달리 일산화탄소 또는 합성가스를 공급한 경우에는 메탄가스가 생산되는 것을 확인하였다. 질소가스를 공급한 대조구와는 달리 일산화탄소 또는 합성가스를 공급한 경우에는 메탄가스가 생산되는 것을 확인하였다. 일산화탄소만을 공급했을 때에는 이산화탄소의 생성으로 가스 생산량이 증가하였으나, 수소가 포함된 합성가스를 공급하였을 때에는 이산화탄소가 탄소원이로 소비되어 가스 저장도 내의 가스량이 감소하는 것을 확인할 수 있었다. 가스화공정에 으해 얻어지는 합성가스는 온도와 가스 조성을 고러할 때, 바이오가스 생산을 위한 혐기성 소화조와 연계하면 소화조의 가온에 필요한 열을 공급할 수 있고 바이오가스 중 이산화탄소 농도를 낮추어 발열량을 개선할 수 있을 것으로 판단된다.

Co-gasification Characteristics of Coal Mixed with Pet-coke in a 1T/D Entrained-Flow Gasifier (1T/D 분류층 가스화기에서의 석탄, 석유코크스 혼합연료 가스화 특성 연구)

  • Lee, Jae-Goo;Yoon, Sang-Jun;Choi, Young-Chan;Ra, Ho-Won;Son, Yung-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.453-456
    • /
    • 2007
  • 감압 증류 후 생성되는 중질유의 고도화를 위하여 코킹 공정을 거친 후 정유 부산물로 생성되는 열적으로 매우 안정하고, 높은 발열량을 갖는 반면 황, 바나듐 함량이 높은 석유코크스의 효과적인 이용을 위하여 본 연구에서는 가스화 공정을 적용하였다. 1T/D 용량의 분류층 가스화기를 이용하여 유연탄(drayton coal), 석유코크스, 또는 혼합한 경우의 가스화 성능을 알아보았으며, 각각의 경우에 대하여 비교하여 보았다. 높은 열 안정성을 갖는 석유코크스의 효과적인 가스화를 위하여 반응기 내 체류시간 및 버너 노즐 변경에 따른 가스화 성능 개선을 시도하였으며, 이때의 온도, 산소/원료 공급량 조건에 따른 생성가스 성분 및 탄소전환율, 냉가스효율 변화 특성을 알아보았다. 버너 노즐 구경 변경으로 인한 슬러리의 미립화를 통하여 향상된 탄소전환율 및 냉가스효율을 얻을 수 있었다.

  • PDF

The Effects of DME on Formation of Methane Hydrate (DME가 메탄하이드레이트 생성에 미치는 영향)

  • Lim, Gyegyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.217.2-217.2
    • /
    • 2010
  • 자연 상태에서의 가스하이드레이트의 존재는 물의 빙점보다 높은 온도에서 가스 수송관이 막히는 사고가 관내에 생성된 하이드레이트에 의한 것으로 규명된 이후영구동토지역이나 심해저에 부존되어 있는 막대한 매장량으로 인해 매우 활발한 연구가 최근에 진행되고 있다. 가스하이드레이트는 수분의 량에 비해 대량의 가스를 함유하므로 인위적인 가스하이드레이트를 제조하기 위하여 여러 가지 연구 중 하이드레이트 반응을 촉진하는 촉진제(promoter)와 생성을 억제하는 억제제(inhibitor)를 찾는 연구가 활발히 이루어지고 있다. 계면활성제와 고분자물질이 이들의 다양한 첨가제로 현제 사용되고 있다. 이러한 연구에서 메탄가스하이드레이트 형성에 영향을 미치는 대상물질로 선택한 DME(Dimethane Ether)는 산소 함유율이 34.8wt%인 함산소연료로 최근 신에너지로 부상하고 있으며, 해외 가스전 개발과 맞물려서 상용화단계에 들어와 있다. DME의 물리화학적인 특성으로는 상온의 온도에서 약5기압의 압력으로 액화 시킬 수 있다. 마취성이 강한 디에틸에테르와는 달리 마취성이 없을 뿐만 아니라 인체에 무해한 무색기체로 세탄가가 60가까이되어 경유(세탄가 55) 대체연료로 내연기관의 실증사업이 진행되고 있다. 이러한 특성을 갖고 있는 DME가 메탄가스 하이드레이트 생성에는 어떤 영향을 미치는지를 본 연구에서는 실험을 통해서 분석을 수행하였다. 실험과정에는 세 단계로 구분하여 진행하였는데 첫 번째 단계에서는 메탄가스만으로 하이드레이트 생성조건을 실험분석하였고, 두 번째 단계에서는 DME가스를 먼저 주입한후 동일 온도에서 메탄가스를 주입시켜 하이드레이트 생성 압력을 실험측정하였다. 마지막 단계에서는 DME가스를 약 두 배 정도 많이 주입한 후 동일 온도에서 메탄가스를 주입하여 하이드레이트 생성 압력을 측정하였디. 이러한 단계별 과정을 다소 온화한 $-5^{\circ}C{\sim}4^{\circ}C$의 온도 범위에서 반복적으로 수행하였다. 실험결과에서는 메탄만의 하이드레이트 형성보다 빙점($0^{\circ}C$) 이하의 온도 범위에서는 DME가 메탄하이드레이트 형성에 촉진제 역할을 하였고, 빙점 이상의 온도에서는 억제제의 역할을 하는 것으로 측정되었다. 또한 첨가된 DME의 양에 따라 촉진제의 역할과 억제제의 역할에 확연한 차이를 보였다. 추후 실험에서는 좀더 넓은 농도, 온도 및 압력범위에서 재현성 실험을 추가로 수행할 것도 제안한다.

  • PDF