• Title/Summary/Keyword: 생물학적 영양물질 제거

Search Result 26, Processing Time 0.027 seconds

Biological Phosphorus Release and Uptake on Nitrate Loadings in Anoxic Condition of SBR process (SBR 공정의 무산소조건에서 질산염농도에 따른 생물학적 인의 방출 및 흡수 특성)

  • Lee, Hee-Ja;Kim, Kwang-Soo;Cho, Yang-Seok;Kim, I-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1164-1168
    • /
    • 2007
  • 질소 및 인 동시제거 공정 중 대표적인 연속회분식반응조(Sequencing Batch reactor: SBR)는 비교적 간편한 운전방법과 저렴한 건설비, 유입수의 부하변동에 큰 영향을 받지 않는 소규모 하수처리에 적합한 공정으로 알려져 있다. 또한 SBR 공정은 기존 활성슬러지 공법에 비해 적은 부지로 많은 양의 폐수를 처리할 수 있고 유입수 수질 및 유량변동에 따라 다양한 운전주기를 변화할 수 있으며, 유기물 제거뿐만 아니라 반응조의 변형에 의해 영양염류의 제거가 가능한 장점이 있다. 본 연구에서는 bench scale SBR 실험을 통하여 질산염의 탈질속도 및 용해성 인의 흡수와 방출속도를 측정하고, SBR 공정의 무산소조건에서 인흡수 및 탈질을 동시에 수행하는 DPB 존재의 가능성을 파악하고자 하였다. 연구결과 무산소조건에서 S-P의 방출과 흡수가 동시에 진행되었으며, 무산소조건에서 S-P의 방출속도는 $0.08{\sim}0.94\;kgS-P/kgMLSS{\cdot}d$, 흡수속도는 $0.012{\sim}0.1\;kgS-P/kgMLSS{\cdot}d$를 나타내었다. 무산소조에서 S-P의 방출 및 흡수가 진행되는 동안 탈질과정도 함께 진행되었으며, 각각의 F/M비에서 탈질속도를 측정한 결과 F/M비 $0.44\;kgCOD/kgMLSS{\cdot}d$에서는 최대 $0.16\;kgNO_3^-N/kgMLSS{\cdot}d$의 탈질속도를 나타내었다. S-P이 방출되지 않는 경우와 방출되는 경우의 비탈질속도를 비교한 결과 S-P이 방출되지 않는 경우의 비탈질속도가 S-P이 방출되는 경우의 비탈질속도보다 높았다. 이렇게 S-P이 방출되는 경우의 비탈질속도가 더 낮은 이유는 무산소 조건에서 탈질과 S-P의 방출 및 흡수가 동시에 일어나는 경우 S-P의 방출에 관여하는 미생물과 탈질에 관여하는 미생물간의 경쟁반응 때문으로 판단된다.응답법의 적용이 가능함을 보였고, 이는 보다 복잡한 관망에서의 천이류 해석이 가능함을 시사한다.$경상도지리지$\lrcorner$(慶尙道地理志)에는 상주가 8곳으로 1/3의 자기 생산을 담당하고 있었다. $\ulcorner$경상도지리지$\lrcorner$(慶尙道地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와 동년대에 동일한 목적으로 찬술되었음을 알 수 있다. $\ulcorner$경상도실록지리지$\lrcorner$(慶尙道實錄地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와의 비교를 해보면 상 중 하품의 통합 9개소가 삭제되어 있고, $\ulcorner$동국여지승람$\lrcorner$(東國與地勝覽) 에서는 자기소와 도기소의 위치가 완전히 삭제되어 있다. 이러한 현상은 첫째, 15세기 중엽 경제적 태평과 함께 백자의 수요 생산이 증가하자 군신의 변별(辨別)과 사치를 이유로 강력하게 규제하여 백자의 확대와 발전에 걸림돌이 되었다. 둘째, 동기(銅器)의 대체품으로 자기를 만들어 충당해야할 강제성 당위성 상실로 인한 자기수요 감소를 초래하였을 것으로 사료된다. 셋째, 경기도 광주에서 백자관요가 운영되었으므로 지방인 상주지역에도 더 이상 백자를 조달받을 필요가 없이, 일반 지방관아와 서민들의 일상용기 생산으로 전락하여 소규모화 되었을 것이라고 사료된다.장 운동기능을 향상시키는 유효성분의 보강 등이 필요하다는 점도 알 수 있었다.더불어 산화물질 해독에 관여하는 다른 유전자

  • PDF

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Effects of Natural Complex Food on Specific Enzymes of Serum and Liver and Liver Microstructure of Rats Fed a High Fat Diet (지방간 환자를 위한 생식용 천연복합식품이 고지방식이를 급여한 흰쥐의 혈청, 간장의 효소 및 간조직 구조에 미치는 영향)

  • Lee, Eun;Kim, Wan-Jae;Lee, Young-Joo;Lee, Mi-Kyung;Kim, Pan-Gu;Park, Yeon-Jung;Kim, Soo-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.2
    • /
    • pp.256-262
    • /
    • 2003
  • In order to design and develop a product that can treat the fatty liver, natural complex food with all natural ingredients was developed and supplemented to rats with high fat diet to induce fatty liver. As a result, when the amount of natural complex food was increased in diet of subjects, the activities of the blood serum AST, ALT, ALP, 3-GT and LDH were decreased. The total protein concentration levels of the 30% and the 50% natural complex food groups did not show changes in respect to the control group, but the 100% natural complex food groups showed significant decrease (p<0.05). Likewise, the amount of blood serum albumin in the 30% and the 50% natural complex food groups did not show improvement, but the 100% natural complex food did showed significant changes (p<0.05). The amount of blood serum triglyceride decreased as the amount of natural complex food was increased. In order to investigate the appearances of the accumulated fat in the liver, the animals were dissected. Livers of the control group (no natural complex food) were appeared as a white color, which means serious fat accumulation. However, all the natural complex food groups (30,50 and 100% natural complex food) showed noticeable decrease of fat content. Even the histology showed that livers of the control group had expansion of the fat, but a11 the natural complex food groups had e decreased as the contents and continued to show destroyed fatty cells. By observing the biological numeric data, the physical appearance and the history of the fatty liver, it is highly expected that natural complex food is very effective in treating the liver damaged -by the to fat and the cholesterol.

Antioxidant and Immunological Activities of Polysaccharide Extracted from Cultured Mycelia of Schizophyllum commune (치마버섯 균사체 배양물로부터 분리한 다당류의 항산화 및 면역 활성)

  • Lee, June-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1334-1341
    • /
    • 2014
  • To examine the biological activity of polysaccharide extracted from cultured mycelia of Schizophyllum commune, we determined anti-complementary activity and nitric oxide production as a measure of immunological activity, anti-lipidperoxidation and hydroxy radical scavenging activity as a measure of antioxidative activity, tyrosinase inhibitory activity, anti-microbial activity, and transdermal flux of polysaccharide extracted from cultured mycelia of S. commune. Polysaccharide extracted from S. commune activated the complementary system and produced nitric oxide in RAW 264.7 macrophages. Antioxidant activities as malondialdehyde values were $49.5{\pm}0.7$, $39.7{\pm}1.7$, $39.2{\pm}1.2$, and $2.6{\pm}0.5nM/mL$ for control, extracellular polysaccharide extracted from S. commune (SC-EP), ultrafiltrated polysaccharide extracted from S. commune (SC-UP), and butylated hydroxytoluene, respectively. Hydroxy radical scavenging activity ($IC_{50}$) of SC-UP and mannitol were 3.32 and 1.66 mg/mL, respectively. Tyrosinase inhibitory activities of SC-UP, arbutin, and kojic acid were 19.9%, 31.8%, and 99.0%, respectively. Anti-microbial activities of SC-UP appeared to be low, and transdermal fluxes of SC-UP were 0.47%, 0.73%, and 1.20% after 3, 6, and 9 hr, respectively. These findings suggest that polysaccharide extracted from S. commune has potential immunological and antioxidant activities.

A Study Bioremediation of Tidal Flat by Microorganism in Pilot Scale Test (환경정화 미생물에 의한 갯벌의 생물학적 정화에 대한 파일럿 규모의 연구)

  • Choi, Hye Jin;Han, Young Sun;Park, Doo Hyun;Oh, Bo Young;Hur, Myung Je;Jo, Nam-Gyu;Kim, Young Hee;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1110-1117
    • /
    • 2014
  • Tidal flats are continuously contaminated by human activities. This study assessed the bioremediation efficiency of tidal flat soil using microcosm reactors and microorganisms originating from the tidal area. We screened 135 bacterial strains that produce extracellular enzymes from the tidal area located in the North port of Incheon bay. Two bacterial strains (Pseudoalteromonas sp. and IC35 Halothiobacillus neapolitanus IC_S22) were selected and used in the microcosm reactors, which were specially designed to functionally mimic the ecological conditions of the tidal flats. Pseudoalteromonas sp. IC35 was selected based on its relatively high activity of the enzymes amylase, cellulose, lipase, and protease. Halothiobacillus neapolitanus IC_S22 was selected for oxidation of sulfur. The M1 and M2 microcosm reactors were operated by continuous feeding of seawater under the same conditions, but M2 was first inoculated with Pseudoalteromonas sp. IC35 before the seawater feeding. The initial COD in both the M1 and M2 microcosm reactors was 320 mg/l. The final COD was 21 mg/l (M1) and 7 mg/l (M2). The M3 and M4 microcosm reactors were operated by continuous feeding of seawater under the same conditions, but M4 was first inoculated with H. neapolitanus IC_S22. The initial sulfate concentration in both the M3 and M4 microcosm reactors was 660 mg/l, and the maximum sulfate concentration was 1,360 mg/l (M3) and 1,600 mg/l (M4).

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF