• Title/Summary/Keyword: 생물측정학

Search Result 765, Processing Time 0.025 seconds

An Efficient Method for Establishing Canopy Photosynthesis Curves of Lettuce (Lactuca sativa L.) with Light Intensity and CO2 Concentration Variables Using Controlled Growth Chamber (생육 챔버를 이용하여 광도 및 이산화탄소 농도 변수를 갖는 상추(Lactuca sativa L.)의 군락 광합성 곡선의 효율적 도출 방법)

  • Jung, Dae Ho;Kim, Tae Young;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2020
  • For developing a canopy photosynthesis model, an efficient method to measure the photosynthetic rate in a growth chamber is required. The objective of this study was to develop a method for establishing canopy photosynthetic rate curves of romaine lettuce (Lactuca sativa L.) with light intensity and CO2 concentration variables using controlled growth chamber. The plants were grown in plant factory modules, and the canopy photosynthesis rates were measured in sealed growth chambers made of acrylic (1.0 × 0.8 × 0.5 m). First, the canopy photosynthetic rates of the plants were measured, and then the time constants were compared between two application methods: 1) changing light intensity (340, 270, 200, and 130 μmol·m-2·s-1) at a fixed CO2 concentration (1,000 μmol·mol-1) and 2) changing CO2 concentration (600, 1,000, 1,400, and 1,800 μmol·mol-1) at a fixed light intensity (200 μmol·m-2·s-1). Second, the canopy photosynthetic rates were measured by changing the light intensity at a CO2 concentration of 1,000 μmol·mol-1 and compared with those measured by changing the CO2 concentration at a light intensity of 200 μmol·m-2·s-1. The time constant when changing the CO2 concentration at the fixed light intensity was 3.2 times longer, and the deviation in photosynthetic rate was larger than when changing the light intensity. The canopy photosynthetic rate was obtained stably with a time lag of one min when changing the light intensity, while a time lag of six min or longer was required when changing the CO2 concentration. Therefore, changing the light intensity at a fixed CO2 concentration is more appropriate for short-term measurement of canopy photosynthesis using a growth chamber.

High School Science Teachers' Understanding of the Contents Related to the Geologic Time in the Secondary School Science Textbooks and the Guidebooks for Teachers (고등학교 과학 교사들의 지질 시대 관련 개념들에 대한 이해: 중등 교과서와 지도서를 중심으로)

  • Kim, Kyung-Soo;Kim, Jeong-Yul
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.32-48
    • /
    • 2006
  • The purposes of this study can divided into three parts: First, to investigate high school science teachers' understanding concerning geologic time; second, to analyze contents related to geologic time in the secondary school science textbooks and teachers' guidebooks; and third, to compare the response type of science teachers using the results of the contents. Forty high school science teachers in the Chungbuk province are chosen to answer to the questionnaire. Many teachers (50%) think that the age of Earth is simply measured by radioisotope. However, most of them do not know the measuring method in detail. The over 50% of the teachers think that the uniformitarianism, law of superposition, law of faunal succession law of unconformity, and law of intrusion are the great five laws of historical geology. Many part of the contents related to geologic time in the textbooks and guidebooks are incorrect and described distinctly from each other. Such content includes the age of Earth, age of the oldest rock in Earth, definition and range of geologic time, measuring method of the Earth's age, and law of historical geology. Many of the science teachers do not have a complete understanding of the contents related to geologic time. This study suggests that the reason lies heavily on the contents described in the textbooks and guidebooks. Therefore, it is necessary to review and revise the contents related to geologic time in the textbooks and guidebooks.

Estimated Time of Biomineralization in Developing Rat Incisors (발생 중인 쥐 절치의 생물학적 광화 소요 시간)

  • Park, Min Kyoung;Min, Soo-Young;Song, Je Seon;Lee, Jae-Ho;Jung, Han-Sung;Kim, Seong-Oh
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.2
    • /
    • pp.138-146
    • /
    • 2017
  • The aim of this study was to estimate time of biomineralization in developmental stages of rat lower incisors. Eruption length was measured. Four stages of incisor development were identified on histologic and microscopic computerized tomography (micro-CT) sections: (1) preodontoblast, (2) dentin matrix secretion, (3) enamel matrix secretion, and (4) enamel calcification. The overall eruption rate of the rat lower incisor was $600{\pm}70{\mu}m/day$ ($mean{\pm}SD$; n = 12). The length of the enamel secretion was $4.59{\pm}0.75mm$ in histologic section, was $3.64{\pm}0.63mm$ in radiographic section, which converts to $180.4{\pm}30.0hours$, $145{\pm}25hours$ respectively (n = 24). These findings suggested that the four biomineralizing developmental stages of the rat incisor took only several days. The significance of this animal study was to provide understanding for the rapid biomineralization process of developing rat tooth germ by analysis of tooth forming period.

Proteome in Toxicological Assessment of Endocrine Disrupting Chemicals (프로테오믹스를 이용한 내분비계 교란물질 환경독성 연구)

  • 김호승;계명찬
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.87-100
    • /
    • 2003
  • It is important to understand the potential human health implications of exposure to environmental chemicals that may act as hormonally active agents. It is necessary to have an understanding of how pharmaceutical and personal care products and other chemicals affect the ecosystem of our planet as well as human health. Endocrine disruption is defined as the ability of a chemical contaminating the workplace or the environment to interfere with homeostasis, development, reproduction, and/or behavior in a living organism or it's offspring. Certain classes of environmentally persistent chemicals such as polychlorinated biphenyls (PCBs), dioxins, furans, and some pesticides can adversely effect the endocrine systems of aquatic life and terrestrial wildlife. Research continues to support the theory of endocrine disruption. However, endocrine disruption researches have been applied to proteomics poorly. Proteomics can be defined as the systematic analysis of proteins for their identity, quantity and function. It could increase the predictability of early drug development and identify non-invasive biomarkers of tonicity or efficacy. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis (2D/E) and MALDI-TOF mass spectrometry (MS) sr protein chip array and SELDI-TOF MS. Proteomics have an opportunity to play an important role in resolving the question of what role endocrine disruptors play in initiating human disease. Proteomics can also play an imfortant role in the evaluation of the risk assessment and use of risk management and risk communication tools required to address public health concerns related to notions of endocrine disruptors. Understanding the need for the proteomics and possessing knowledge of the developing biomakers used to abbess endocrine activity potential will he essential components relevant to the topic of endocrine disruptors.

Assessment of New Algicide Thiazolidinedione (TD49) for the Control of Marine Red Tide Organisms (해양적조생물제어를 위한 살조물질 Thiazolidinedione 유도체(TD49) 평가)

  • Baek, Seung-Ho;Jang, Min-Chul;Joo, Hae-Mi;Son, Moon-Ho;Cho, Hoon;Kim, Young-Ok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Worldwide development of harmful algal blooms causes serious problem for public health and fisheries industries. To evaluate the algicidal impact on the harmful algae bloom species in aquatic ecosystems of coast, a new algicide thiazolidinedione derivative (TD49) were tentatively examined in the growth stages (i.e., lag, logarithmic and stationary phase) of rapidophyceae $Heterosigma$ $akashiwo$, $Chattonella$ $marina$ and $Chattonella$ sp..Three strains could easily destroy in the lag phase due to relatively weak cell walls than those of the logarithmic and stationary phase. It is thought that inoculation of TD49 substances into initial or developmental natural blooms with a threshold concentration ($2{\mu}M$) can maximize the algicidal activity. Also, bio-chemical assays revealed that the algicidal substances from all culture strains were likely to be extracellular substances because those cells have easily destroyed in cell walls. On the other hand, natural zooplankton communities were influenced within the exposure experiments of $2{\mu}M$, which is showed the maximum algcidal activity of tested organisms. These results indicate that although the TD49 substance is potential agents for the control of $H.$ $akashiwo$, $C.$ $marina$ and $Chattonella$ sp. in the enclosed eutrophic bay and coastal water, more detailed research of acute toxicity effect on high trophic organism in marine ecosystems need to be conducted.

A simple screening method using lignoceullulose biodegradation for selecting effective breeding strains in Agaricus bisporus (리그노셀룰로오스 생물학적 분해를 이용한 간단한 양송이 육종효율 우수 균주 선발)

  • Oh, Youn-Lee;Nam, Youn-Keol;Jang, Kab-Yeul;Kong, Won-Sik;Oh, Min ji;Im, Ji-Hoon
    • Journal of Mushroom
    • /
    • v.15 no.3
    • /
    • pp.134-138
    • /
    • 2017
  • The white button mushroom, Agaricus bisporus, is commercially the fifth most important edible mushroom, accounting for the production of 9,732 tons of mushrooms in Korea in 2015. The genus Agaricus has been known for its potential to degrade lignocellulosic materials. Chemical analyses carried out during the cultivation of A. bisporus indicated that the cellulose, hemicellulose, and lignin fractions were changed preferentially for both vegetative growth and sexual reproduction. We screened A. bisporus strains for effective biodegradation through extracellular enzyme activity using cellulase, xylanase, and ligninolytic enzymes. The enzyme biodegradations were conducted as follows: mycelia of collected strains were incubated in 0.5% CMC-MMP (malt-mops-peptone), 0.5 Xylan-MMP, and 0.5% lignin-MMP media for 14 days. Incubated mycelia were stained with 0.2% trypan blue. Eighteen strains were divided into 8 groups based on different extracellular enzyme activity in MMP media. These strains were then incubated in sterilized compost and compost media for 20 days to identify correlations between mycelial growth in compost media and extracellular enzyme activity. In this study, the coefficient of determination was the highest between mycelial growth in compost media and ligninolytic enzyme activity. It is suggested that comparison with ligninolytic enzyme activity of the tested strains is a simple method of screening for rapid mycelial growth in compost to select good mother strains for the breeding of A. bisporus.

Current Status of Hyperspectral Data Processing Techniques for Monitoring Coastal Waters (연안해역 모니터링을 위한 초분광영상 처리기법 현황)

  • Kim, Sun-Hwa;Yang, Chan-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.48-63
    • /
    • 2015
  • In this study, we introduce various hyperspectral data processing techniques for the monitoring of shallow and coastal waters to enlarge the application range and to improve the accuracy of the end results in Korea. Unlike land, more accurate atmospheric correction is needed in coastal region showing relatively low reflectance in visible wavelengths. Sun-glint which occurs due to a geometry of sun-sea surface-sensor is another issue for the data processing in the ocean application of hyperspectal imagery. After the preprocessing of the hyperspectral data, a semi-analytical algorithm based on a radiative transfer model and a spectral library can be used for bathymetry mapping in coastal area, type classification and status monitoring of benthos or substrate classification. In general, semi-analytical algorithms using spectral information obtained from hyperspectral imagey shows higher accuracy than an empirical method using multispectral data. The water depth and quality are constraint factors in the ocean application of optical data. Although a radiative transfer model suggests the theoretical limit of about 25m in depth for bathymetry and bottom classification, hyperspectral data have been used practically at depths of up to 10 m in shallow and coastal waters. It means we have to focus on the maximum depth of water and water quality conditions that affect the coastal applicability of hyperspectral data, and to define the spectral library of coastal waters to classify the types of benthos and substrates.

Preliminary growth chamber experiments using thermal infrared image to detect crop disease (적외선 촬영 영상 기반의 작물 병해 모니터링 가능성 타진을 위한 실내 감염 실험)

  • Jeong, Hoejeong;Jeong, Rae-Dong;Ryu, Jae-Hyun;Oh, Dohyeok;Choi, Seonwoong;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2019
  • The biotic stress of garlic and tobacco infected by bacteria and virus was evaluated using a thermal imaging camera in a growth chamber. The remote sensing technique using the thermal camera detected that garlic leaf temperature increased when the leaves were infected by bacterial soft rot of garlic. Furthermore, the temperature of leaf was relatively high for the leaves where the colony-forming unit per mL was large. Such temperature patterns were detected for tobacco leaves infected by Cucumber Mosaic Virus using thermal images. In addition, the crop water stress index (CWSI) calculated from leaf temperature also increased for the leaves infected by the virus. The event such that CWSI increased by the infection of the virus occurred before visual disease symptom appeared. Our results suggest that the thermal imaging camera would be useful for the development of crop remote sensing technique, which can be applied to a smart farm.

A analysis of plant communities distribution characteristics of Boseong river wetland using ordination (서열법(ordination)을 이용한 보성강 하천 습지의 식물군락 분포 특성 분석)

  • Lee, Il Won;Kim, Kee Dae
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.354-366
    • /
    • 2022
  • To analyze the distribution of plant communities growing in river wetlands and the relationship between biotic and abiotic environmental factors, plant communities and environmental factors were investigated in river wetlands in the Boseong River. The Boseong River Wetland, the research site, consists of Hwapyeong Wetland, Bangujeong Wetland, and Seokgok Wetland. From June to September 2022, a plant community survey was conducted from the perspective of physiognomical vegetation, and the coverage of the emerging species followed the Braun-Blanquet scale. Plant species and the coverage of each species were recorded in the quadrant for plant community survey, and the cover of the quadrant, the total number of species, and the number of exotic species were measured as biological factors. As abiotic factors, altitude, orientation, inclination, soil texture, litter layer depth, dominant species diameter at breast height, and topography were recorded. In a total of 50 square plots, the most common Salix koreensis and Phragmites japonicus communities were found, and the community with the highest Shannon species diversity index was Phragmites japonicus-Echinochloa caudata community. As a result of ordination analysis by DCCA, the most significant clusters were separated according to topographic factors such as leeve, leeve slope, upper floodplain, lower floodplain, upper waterside, middle waterside, lower waterside, river island and opem water. As rare plants that need to be preserved in river wetlands, Hydrocharis dubia and Penthorum chinense were found in lower waterside, and it was found that the management of the river in the reservoir is necessary in line with the topographical distribution of ecosystem-disrupting plants, such as Paspalum distichum var. indutum.

Enhancement of Photosynthetic Characteristics and Antioxidant Enzyme Activities on Chili Pepper Plants by Salicylic Acid Foliar Application under High Temperature and Drought Stress Conditions (고온 및 건조 스트레스 조건 하에서 살리실산 경엽처리에 의한 고추의 광합성 특성 및 항산화효소 활성 증대)

  • Lee, Jinhyoung;Lee, Heeju;Wi, Seunghwan;Lee, Hyejin;Choi, Haksoon;Nam, Chunwoo;Jang, Seonghoe
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.311-318
    • /
    • 2022
  • Salicylic acid (SA), a phenolic compound, plays a pivotal role in regulating a wide range of physiological and metabolic processes in plants such as antioxidant cellular defense, photosynthesis, and biotic and abiotic stress responses during the growth and development. We examined the effect of exogenous SA application (100 mg·L-1) on the growth, yield, photosynthetic characteristics, lipid peroxidation, and antioxidant enzyme activity of chili pepper plants under high temperature and drought stress conditions. SA treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde and H2O2 were significantly lower in the third treatment of SA compared to the control. The activity of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase, increased in treated plants by up to 247, 318, 55 and 54%, respectively compared to the nontreated control. There was no significant difference in the growth characteristics between SA-treated and nontreated plants, while the SA treatment increased marketable yield (kg/10a) by about 15% compared to the nontreated control. Taken together, these results suggest that foliar application of SA alleviates physiological damages caused by the combination of drought and heat stress, and enhances the photosynthetic capacity and antioxidant enzyme activities, thereby improving tolerance to a combination of water deficit and heat stress in chili pepper plants.