• Title/Summary/Keyword: 샘플링검사

Search Result 132, Processing Time 0.022 seconds

The Average Outgoing Quality of CSP's for Markov-Dependent Production Processes in Short Production Runs (마코프종속(從屬)인 생산공정의 운영기간(運營期間)에 따른 연속생산형(連續生産型) 샘플링 검사방식의 평균출검품질(平均出檢品質))

  • Park, Heung-Seon;Kim, Seong-In
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.1
    • /
    • pp.89-103
    • /
    • 1989
  • In this paper the approximate average outgoing quality and properties of a class of continuous sampling plans in a short production run are investigated when the quality of successive units follows a two-state time-homogeneous Markov chain. The results of previous studies can be obtained as special cases. It is observed that the long-run average outgoing quality limit values under the statistical control differ significantly as compared to the case of short production runs in a Markov-dependent production process.

  • PDF

Variables Sampling Inspection Procedures and Tables with Severity Adjustment (계량조정형(計量調整型) 샘플링 검사(檢査)에 관(關)한 연구(硏究))

  • Bai, Do-Sun;Hong, Sung-Hoon;Sohn, Mi-Ae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1990
  • An AQL type variables sampling system with switching rules is proposed. Comparative studies of existing variables sampling standards - MIL-STD-414, ANSI Z1.9, ISO 3951, and BS 6002 - are made, and simulation studies on switching procedures are conducted. Based on comparative and simulation studies, a variables sampling standard for Korean industry is proposed. The master sampling tables of the proposed standard are taken from the variables standard ANSI Z 1. 9 and the switching rules are matched to the attributes standard KS A 3109 to enable us to move between the proposed variables standard and KS A 3109. Composite OC and ASN curves of the proposed standard are calculated for selected combinations of lot sizes and AQL's and they are compared with those of ANSI Z1.9.

  • PDF

Development of Reliability Acceptance Sampling Plan for the Case where the Degradation Quantity of the Performance Characteristic follows Weibull Distribution based on the Accelerated Degradation Test (성능특성치의 열화가 와이블 분포를 따를 때 가속열화시험을 활용한 신뢰성 샘플링검사계획의 개발)

  • Lim, Heonsang;Park, Jaehun;Sung, Si-Il
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.122-129
    • /
    • 2018
  • Purpose: This article develops an optimal reliability acceptance sampling plan for the case where the degradation quantity of the performance characteristic follows Weibull distribution. Method: For developing reliability acceptance sampling plans, the sample size and the acceptance constant are determined based on the accelerated characteristic of the test condition and the product. Results: The sample size and the acceptance constant are provided such that the constraints of the producer and the consumer risks are satisfied. Conclusion: Reliability acceptance sampling plans based on the accelerated degradation test method can be used for the quality control within a resonable amount of cost and time. In this article. an optimal reliability sampling plans are newly developed for this purpose.

A Study on Pathological Pattern Detection using Neural Network on X-Ray Chest Image (신경회로망을 이용한 X-선 흉부 영상의 병변 검출에 관한 연구)

  • 이주원;이한욱;이종회;조원래;장두봉;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.371-378
    • /
    • 2000
  • In this study, we proposed pathological pattern detection system for X-ray chest image using artificial neural network. In a physical examination, radiologists have checked on the chest image projected the view box by a magnifying glass and found out what the disease is. Here, the detection of X-ray fluoroscopy is tedious and time-consuming for human doing. Lowering of efficiency for chest diagnosis is caused by lots mistakes of radiologist because of detecting the micro pathology from the film of small size. So, we proposed the method for disease detection using artificial neural network and digital image processing on a X-ray chest image. This method composes the function of image sampling, median filter, image equalizer used neural network and pattern recognition used neural network. We confirm this method has improved the problem of a conventional method.

  • PDF

Application of deep learning technique for battery lead tab welding error detection (배터리 리드탭 압흔 오류 검출의 딥러닝 기법 적용)

  • Kim, YunHo;Kim, ByeongMan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • In order to replace the sampling tensile test of products produced in the tab welding process, which is one of the automotive battery manufacturing processes, vision inspectors are currently being developed and used. However, the vision inspection has the problem of inspection position error and the cost of improving it. In order to solve these problems, there are recent cases of applying deep learning technology. As one such case, this paper tries to examine the usefulness of applying Faster R-CNN, one of the deep learning technologies, to existing product inspection. The images acquired through the existing vision inspection machine are used as training data and trained using the Faster R-CNN ResNet101 V1 1024x1024 model. The results of the conventional vision test and Faster R-CNN test are compared and analyzed based on the test standards of 0% non-detection and 10% over-detection. The non-detection rate is 34.5% in the conventional vision test and 0% in the Faster R-CNN test. The over-detection rate is 100% in the conventional vision test and 6.9% in Faster R-CNN. From these results, it is confirmed that deep learning technology is very useful for detecting welding error of lead tabs in automobile batteries.

Learning Source Code Context with Feature-Wise Linear Modulation to Support Online Judge System (온라인 저지 시스템 지원을 위한 Feature-Wise Linear Modulation 기반 소스코드 문맥 학습 모델 설계)

  • Hyun, Kyeong-Seok;Choi, Woosung;Chung, Jaehwa
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.473-478
    • /
    • 2022
  • Evaluation learning based on code testing is becoming a popular solution in programming education via Online judge(OJ). In the recent past, many papers have been published on how to detect plagiarism through source code similarity analysis to support OJ. However, deep learning-based research to support automated tutoring is insufficient. In this paper, we propose Input & Output side FiLM models to predict whether the input code will pass or fail. By applying Feature-wise Linear Modulation(FiLM) technique to GRU, our model can learn combined information of Java byte codes and problem information that it tries to solve. On experimental design, a balanced sampling technique was applied to evenly distribute the data due to the occurrence of asymmetry in data collected by OJ. Among the proposed models, the Input Side FiLM model showed the highest performance of 73.63%. Based on result, it has been shown that students can check whether their codes will pass or fail before receiving the OJ evaluation which could provide basic feedback for improvements.

Reliability Acceptance Sampling Plans with Sequentially Supplied Samples (시료가 축차적으로 공급되는 상황에서의 신뢰성 샘플링검사 계획)

  • Koo, Jung-Seo;Kim, Min;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.76-85
    • /
    • 2007
  • A reliability acceptance sampling plan (RASP) consists of a set of life test procedures and rules for eitheraccepting or rejecting a collection of items based on the sampled lifetime data. Most of the existing RASPs areconcerned with the case where test items are available at the same time. However, as in the early stage ofproduct development, it may be difficult to secure test items at the same time. In such a case, it is inevitable toconduct a life test using sequentially supplied samples.In this paper, it is assumed that test items are sequentially supplied, the lifetimes of test items follow anexponential disthbution, failures are monitored continuously, arrival times of test items are known, and thenumber of test items at each arrival time is given. Under these assumptions, RASPs are developed by deter-mining the test completion time and the critical value for the maximum likelihood estimator of the mean lifetimesuch that the producer and consumer risks are satisfied. Then, the developed plans are compared to thetraditional Type-I censored RASPs in terms of the test completion time. Computational results indicate that thetest completion time of the developed RASP is shorter than that of the traditional Type-I censored plan in mostcases considered. It is also found that the superiority of the developed RASP becomes more prominent as theinter-arrival times of test items increase and/or the total number of test items gets larger.

Small-Sample Inspection Plans for the New Product Quality Level Evaluation of Finite Population : Focused on Guided Weapons in Development Stage (생산수량이 한정된 신제품의 품질수준 평가를 위한 샘플링검사 방법 : 개발단계 유도무기를 중심으로)

  • Shin, Byung-Cheol;Byun, Jai-Hyun;Lee, Chang-Woo;Lee, Ki-Yong;Choi, Jong-Soo;Woo, Hee-Sung;Seo, Bo-Gil
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.481-487
    • /
    • 2015
  • In the product development stage, it is very important to ensure demanded quality level before moving to the full-scale manufacturing. For example, in developing guided weapons, live-fire tests are required to verify the final performance of the weapons which are very expensive. The quality evaluation of the guided weapons needs destructive testing, which makes it necessary to test as small number of samples as possible. This paper presents sampling inspection plans and calculating system for finite population guided weapons, which can meet the demanded quality level and confidence level with the minimum number of performance tests. The result of this paper can be useful for any kind of costly destructive testing.

A Case Study for Estimating the Defect Rate of PLC Using Sampling Inspection and Improving the Cause of Defects (샘플링검사를 이용한 PLC의 불량률 추정 및 불량원인 개선 사례연구)

  • Moon, In-Sun;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.128-135
    • /
    • 2021
  • WDM(Wavelength Division Multiplexing) is called a wavelength division multiplexing optical transmission method and is a next-generation optical transmission technology. Case company F has recently developed and sold PLC(Planar Lightwave Circuit), a key element necessary for WDM system production. Although Chinese processing companies are being used as a global outsourcing strategy to increase price competitiveness by lowering manufacturing unit prices, the average defect rate of products manufactured by Chinese processing companies is more than 50%, causing many problems. However, Chinese processing companies are trying to avoid responsibility, saying that the cause of the defect is the defective PLC Wafer provided by Company F. Therefore, in this study, the responsibility of the PLC defect is clearly identified through estimating the defect rate of PLC using the sampling inspection method, and the improvement plan for each cause of the PLC defect for PLC yeild improvement is proposed. The result of this research will greatly contribute to eliminating the controversy over providing the cause of defects between global outsourcing companies and the head office. In addition, it is expected to form a partnership with Company F and a Chinese processing company, which will serve as a cornerstone for successful global outsourcing. In the future, it is necessary to increase the reliability of the PLC yield calculation by extracting more precisely the number of defects.

An Algorithm for Determining Double Rectifying Inspection Plans (선별형 2회 샘플링 검사방식의 최적설계를 위한 알고리즘 개발)

  • Kang, Bo-Chul;Cho, Jai-Rip
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.4
    • /
    • pp.207-223
    • /
    • 1996
  • These days, customers have attached great importance to the function of product liability and quality assurance. In Korea, the single rectifying sampling inspection for attribute (KS A 3105) has been used. But this inspection plan given by tables (KS A 3105) has some defects. There are limitations in the range of applications and irrationality of approximate probability and the double rectifying sampling inspection is not mentioned. Moreover, ATI (average total inspection) does not reflect sampling costs and the loss of nonconforming item. Therefore, the objectives of this study is to develope new algorithms and computer program that provide the optimal sampling inspection plan based on minimum linear costs (single & double inspection plan). The result of this study revealed that the new algorithm is less than KS A 3105 in ATI and basically, double inspection plan is more economical. Also it comes over restrictions in KS A 3105. So, it is definite that the optimal solution can be obtained considering cost factors in manufacturing and sampling process, and costs can be saved in the long term.

  • PDF