• Title/Summary/Keyword: 샌드위치 보

Search Result 54, Processing Time 0.031 seconds

Measurement of natural frequency of aluminum honeycomb sandwich beams using high speed digital cameras (고속 디지털 카메라를 이용한 알루미늄 하니콤 샌드위치 보의 고유 진동수 계측)

  • Goo, Nam Seo;Vang, Hoang My;Le, Vinh Tung;Jin, Tailie
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • In this study, we measured the natural frequencies of aluminum honeycomb sandwich beams using digital image correlation technique. The vibration images were captured using two high speed digital cameras and the images were converted to displacements by the digital image correlation technique. Displacement data in time domain were tranformed to frequency domain data by fast Fourier transform software. To reduce noise invoked by random exitation, a spectrum averaging technique and Savitsky-Golay digital filter were adopted. A conventional vibration measurement using an accelerometer and a finite element analysis were performed to compare the results by high speed digital camera measurement method. In conclusion, new method using high speed digital cameras and digital image correlation technique can measure the vibration of beam structures and can be applied to bio-structures where sensors cannot be attached.

Effect of Composite Film on Quail Egg and Sandwich Breads (복합 필름(SPI/corn search)이 메추리알 및 샌드위치 식품에 미치는 영향)

  • Kim Jae-Youn;Park Sang-Kyu;Rhee Chong-Ouk
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • Yolk index (In, Haugh unit (BU) and weight loss of quail egg were measured to evaluate the effect of composite film (SPI/corn starch). Also, the effect of composite film was investigated to extend the shelf-life of sandwich foods. The quality characteristics of sandwich food was measured by the weight increment The weight reduction ratio for quail egg coated with composite film showed $8\%$ increment after 20 day storage. Yolk index and Haugh unit were significantly different between the uncoated and coated quail eggs with composite film solution. Sandwich coated with composite film showed the less weight increase for 12 hour storage compared to controls.

Effects of Specimen Geometry on Stress Distribution in Sandwich Specimen Under Combined Loads (복합하중을 받는 샌드위치 시편의 응력분포에 미치는 시편 형상의 영향)

  • Park, Su-Kyeong;Hong, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1587-1592
    • /
    • 2010
  • The effects of specimen geometry and loading conditions on the stress distribution in a sandwich specimen under combined loads are investigated by elastic finite element analysis. A commercial software NASTRAN is used in plain-strain two-dimensional finite element analysis of sandwich specimens; the analysis was performed for three different specimen shape factors and four different combined displacement conditions. The results of computational analysis suggest that the effect of the combined displacement angle, which is defined as the ratio of the shear displacement to the normal displacement, on the size of the non-homogeneous stress distribution is observed only in the case of the shear stress and von Mises stress. Also as the combined displacement angle increases, the size of the nonhomogeneous stress distribution decreases in the case of the shear stress and increases in the case of the von Mises stress. In addition, as the specimen shape factor, which is defined as the ratio of the specimen length to the height, increases, the size of the non-homogeneous stress distribution under combined displacement conditions decreases significantly.

A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites (하니컴 샌드위치 복합재를 적용한 저상버스의 충돌 및 전복 특성 연구)

  • Shin, Kwang-Bok;Ko, Hee-Young;Cho, Se-Hyun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • This paper presents the evaluation of crashworthiness and rollover characteristics of low-floor bus vehicles made of aluminum honeycomb sandwich composites with glass-fabric epoxy laminate facesheets. Crashworthiness and rollover analysis of low-floor bus was carried out using explicit finite element analysis code LS-DYNA3D with the lapse of time. Material testing was conducted to determine the input parameters for the composite laminate facesheet model, and the effective equivalent damage model for the orthotropic honeycomb core material. The crash conditions of low-floor bus were frontal accident with speed of 60km/h. Rollover analysis were conducted according to the safety rules of European standard (ECE-R66). The results showed that the survival space for driver and passengers was secured against frontal crashworthiness and rollover of low-floor bus. Also, The modified Chang-Chang failure criterion is recommended to predict the failure mode of composite structures for crashworthiness and rollover analysis.

Failure Strength Analysis of Simply Supported Sandwich Slab Bridges made by Composite Materials (복합재료로 만들어진 단순지지 샌드위치 슬래브 교량의 파괴강도해석)

  • Han, Bong-Koo;Kim, Se-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper presented, a design method of sandwich slab bridge of simple supported made by composite materials. Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with sections, boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Thus, Finite Difference Method is used for analysis of the pertinent problem. For the design of bridge made by the composite materials, cross-section is used the form-core shape because of this shape is economical and profitable, and for output of the stress value used F.D.M. Based the experimental of a composite specialist, an equation expressing the rate of decrease of tensile strength of glass fibers based on increase of mass was obtained. From these equations, one can estimate the rate of tensile strength reduction due to increased size. Tasi-Wu failure criterion for stress space is used. Strength-failure analysis procedure, using these reduced tensile strength, is presented.

Weight Minimization of a Beam Structure Using a Honeycomb Sandwich Panel (허니컴 샌드위치 패널을 이용한 보 구조물의 경량화에 관한 연구)

  • 성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.125-128
    • /
    • 2003
  • In machine tool design, fast traversing cannot be achieved without reducing mass of the moving part. Honeycomb sandwich panel is extremely lightweight, and relatively rigid at the same time. We can reduce much weight when we selectively utilize honeycomb sandwich panels as stiffeners on machine tool structures. Feasibility of reducing weight is studied using a beam structure with both ends fixed.

  • PDF

An Experimental Study on the Bending Behavior of F.R.P. Sandwich Structure with 2nd Reinforced Bonding (2차 접착된 Sandwich 구조의 굽힘에 관한 실험연구)

  • Kim, Ik Tai
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.47-51
    • /
    • 2016
  • It has made a special study of bending behavior of F.R.P. sandwich beams with bonded 2nd-reinforced plies. Specimen's faces were made of chopped mat 300-450, roving clothes 570, core is urethane foam, resin is 713bp unsaturated polyester for ship construction and the mixture weight ratio of resin versus fiber was 55:45 for bending analysis. The purpose of this paper is to study the exact bending behavior of bonded area's deflection and stiffness depends upon various bonded F.R.P. (2nd reinforced ply) length and thickness on which covered joints and to find the optimum design for the sandwich structures. All results and suggestions are based on experiment and using thick face calculation.

Magnetoresistance of Buffer/CoFe/Cu/Co Sandwiches (Buffer 층을 갖는 CoFe/ Cu/ Co 샌드위치 박막의 자기저항 특성)

  • 송은영;오미영;김경민;이장로;김미양;김희중;박창만;이상석;황도근
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.146-151
    • /
    • 1997
  • Buffer (t $\AA$)/ CoFe(35$\AA$)/Cu (50$\AA$)/Co (35$\AA$) sandwiches prepared by dc magnetron sputtering on Corning glass substrates using the $Co_{90}Fe_{10}$ and Co layers with different coercivities. Dependence of magnetoresistance on the type and thickness of buffer layers, and on the thickness of Cu and the magnetic layers in buffer/ CoFe/Cu /Co sandwiches were investigated. Magnetoresistance ratio and saturation field $H_s$ increased as thickness of the buffer layer becomes thicker, then decreased smoothly after a maximum value. An improved filed sensitivity was realized with the $Ni_{81}Fe_{19}$ buffer layer.

  • PDF

A Study on the Characteristics of Vibration Damping of a Beam with Inserted Viscoelastic Layer (점탄성층을 삽입한 3층 적층보의 진동감쇠특성에 관한 연구)

  • 박응순;박세만;박명균;박상규
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.511-519
    • /
    • 1997
  • For a number of years it has been known that flexural vibration in a beam and plate can be damped by the application of layer of damping (viscoelastic) material that is in turn constrained by a backing layer or foil. In this study, a quantitative analysis of damping of the sandwich beam has been performed by using impact test. The damping is characterized by the loss factor .etha. in which the damping is normalized by imaginary part of the complex bending stiffiness of the beam. Results show that the relative thickness of the sandwich beam gives more effect on the riatural-frequencies and loss factor than the variation of width does. It is also shown that the Ross-Kerwin-Ungar equation and impact test can be effectively used to identify the damping characteristic of the sandwich beam and viscoelastic material.

  • PDF

The Vibration Analysis of Composite-VEM Thin-Walled Rotating Beam Using GHM Methodology (회전하는 복합재-VEM 박판보의 GHM 기법을 이용한 진동해석)

  • 박재용;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, warping restraint, anisotropy of constituent materials, and warping and rotary inertias. The VEM layer damping treatment is modeled by using the Golla-Mushes-McTavish(GHM) method, which is employed to account for the frequency-dependent characteristic o the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF