• Title/Summary/Keyword: 색상 정보

Search Result 1,492, Processing Time 0.03 seconds

Object Detection using Multiple Color Normalization and Moving Color Information (다중색상정규화와 움직임 색상정보를 이용한 물체검출)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.721-728
    • /
    • 2005
  • This paper suggests effective object detection system for moving objects with specified color and motion information. The proposed detection system includes the object extraction and definition process which uses MCN(Multiple Color Normalization) and MCWUPC(Moving Color Weighted Unmatched Pixel Count) computation to decide the existence of moving object and object segmentation technique using signature information is used to exactly extract the objects with high probability. Finally, real time detection system is implemented to verify the effectiveness of the technique and experiments show that the success rate of object tracking is more than $89\%$ of total 120 image frames.

Texture Feature Extraction Using Wavelet Transform For Content-Based Retrieval (내용기반 검색을 위한 웨이브릿 변환을 이용한 텍스쳐 특징 추출)

  • 채영심;위성두;강현철;김정규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.505-507
    • /
    • 2001
  • 최근 여러 멀티미디어 서비스가 활발히 실시되고 있으며 멀티미디어 검색분야도 상당한 연구가 이루어지고 있다. 멀티미디어 검색 중 내용 기반 검색은 기존의 텍스트기반의 여러 단점들을 극복하여 이미지 자체에 있는 여러 정보의 혼합으로 보다 더 정확한 이미지를 찾을 수 있다. 예를 들면, 색상검색이나 질감검색을 이미지 자체내에서 추출해내고 색상과 질감을 같이 표현함으로써 색상만으로 표현할 수 없는 부분을 질감을 참고로 하여 찾을 수 있다. 본 논문에서는 웨이브릿 변환(daubechies 7-9 tab)을 사용하여 질감을 표현하는 특징 추출하는 방법을 제안하고자 한다.

  • PDF

Design and Implementation of the Feature Information Parsing System for Video Image (동영상 이미지의 특징정보 분석 시스템 설계 및 구현)

  • 최내원;지정규
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Due to the fast development in computer application technologies, a video is now being more widely used than ever in many areas. The current information analyzing systems are basically built to process text-based data. Thus, it has little bits Problems when it needs to correctly represent the ambiguity of a video, when it has to process a large amount of comments. or when it lacks the objectivity that the jobs require. We would like to purpose the method that is capable of analyze a large amount of video efficiently. To extract the color, we translate the color from RGB to HSI and use the information that matches with the representative colors. To extract the shape information, we use improved moment invariants(IMI) so that we can solve many problems of histogram intersection.

  • PDF

Image Retrieval Using Spatial Color Correlation and Texture Characteristics Based on Local Fourier Transform (색상의 공간적인 상관관계와 국부적인 푸리에 변환에 기반한 질감 특성을 이용한 영상 검색)

  • Park, Ki-Tae;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, we propose a technique for retrieving images using spatial color correlation and texture characteristics based on local fourier transform. In order to retrieve images, two new descriptors are proposed. One is a color descriptor which represents spatial color correlation. The other is a descriptor combining the proposed color descriptor with texture descriptor. Since most of existing color descriptors including color correlogram which represent spatial color correlation considered just color distribution between neighborhood pixels, the structural information of neighborhood pixels is not considered. Therefore, a novel color descriptor which simultaneously represents spatial color distribution and structural information is proposed. The proposed color descriptor represents color distribution of Min-Max color pairs calculating color distance between center pixel and neighborhood pixels in a block with 3x3 size. Also, the structural information which indicates directional difference between minimum color and maximum color is simultaneously considered. Then new color descriptor(min-max color correlation descriptor, MMCCD) containing mean and variance values of each directional difference is generated. While the proposed color descriptor includes by far smaller feature vector over color correlogram, the proposed color descriptor improves 2.5 % ${\sim}$ 13.21% precision rate, compared with color correlogram. In addition, we propose a another descriptor which combines the proposed color descriptor and texture characteristics based on local fourier transform. The combined method reduces size of feature vector as well as shows improved results over existing methods.

Evaluation of illumination effect for on-board spectrometer system (내장형 분광광도시스템 구성에 따른 조명 영향 평가)

  • Lee, Sangsik;Lee, Choongho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 2010
  • On-board spectrophotometer has been widely used as a non-contact and non-destructive measurement system in many fields. In this study, we evaluated the effect with respect to the light of on-board spectrophotometer based on a comparison with the standard spectrophotometer and color information coordinate system. Red, yellow, green and blue color paper, which were the standard reflective color paper and Munsell color paper, were used for experiments. In order to compare between a standard spectrophotometer system and an on-board spectrophotometer system, each color paper was measured 20 times. We concluded that it is possible to develop a system regardless the effect of light if the light was supplied consistently and a calibration was performed exactly while we applied an on-board spectrophotometer to non-contact and non-destructive measurement system.

  • PDF

Smart Photo Clustering Based on Dominant Color Histogram Feature and Mean-Shift Clustering (주 색상 히스토그램 특징과 Mean-Shift 알고리즘을 사용한 사진 자동분류)

  • Na, In-Seop;Choi, Jun-Yong;Cho, Wan-Hyun;Kim, Soo-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.633-636
    • /
    • 2012
  • 최근 디지털카메라와 스마트 폰 등의 모바일 기기가 급속도로 발전 하면서 언제, 어디서나 손쉽게 사진을 찍을 수 있게 되었다. 이런 환경의 변화는 수없이 많은 사진을 양산하게 되었고, 손쉽게 많이 찍은 사진에 대한 분류에 불필요한 시간을 많이 보내게 되었다. 따라서 보다 편리하게 촬영된 사진들을 분류 관리하기에 적합한 자동화된 프로그램이 필요하게 되었다. 이 논문에서는 GPS나 시간 등의 메타 정보에 의존하지 않고 오직 사진의 주 색상을 이용한 히스토그램 특징과 Mean Shift 분류기를 사용하여 대략적인 분류를 시도하려했다. 실험결과를 토대로 살펴보면, 제안된 방법은 사진의 주 색상이 확실한 경우는 잘 분류할 수 있지만 여러 가지 색상이 복잡하게 혼합된 경우와 주 색상을 찾기 어려운 경우에는 분류에 한계가 있음을 알 수 있었다. 따라서 제안된 알고리즘은 사진과 영상들을 개략적인 분류를 실시할 때 주 색상 히스토그램특징이 의미 있는 전역적 특징(Global Feature)중의 하나로 생각된다.

Robust Mean-Shift Tracking Using Adoptive Selection of Hue/Saturation (Hue/Saturation 영상의 적응적 선택을 이용한 강인한 Mean-Shift Tracking)

  • Park, Han-dong;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.579-582
    • /
    • 2015
  • The Mean-Shift is a robustness algorithm that can be used for tracking the object using the similarity of histogram distributions of target model and target candidate. However, Mean-shift using hue information has disadvantage of tracking a wrong target when the target and background has similar hue distributions. We then propose a robust Mean-Shift tracking algorithm using new image that combined upper 4bit-planes in hue and saturation, respectively.

  • PDF

Face Tracker Using Condensation and Ellipse Fitting (컨덴세이션과 타원근사를 이용한 얼굴추적기)

  • Hong, Hyun-Suk;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2355-2357
    • /
    • 2001
  • 색상정보는 물체의 특성을 나타내는 고유한 특징점이 될 수 있으며, 물체를 인식하는데 중요한 정보를 제공한다. 색상정보를 이용한 얼굴영역의 추출은 얼굴의 방향이나 형태의 변화에 덜 민감하고 그 추출속도가 빠르다는 장점 때문에 많이 사용된다. 그러나 색상정보는 조명의 변화에 따라 민감하게 바뀐다는 단점을 가진다. 또한 실내환경에서 피부색과 유사한 배경이나 배경물체들이 많이 존재한다. 이러한 조명의 변화나 배경들이 존재하는 경우에 피부색을 이용한 얼굴 추출은 실패하기 쉽다. 본 논문에서는 이러한 단점을 극복하기 위하여 피부색상 모델의 추적을 행하였으며, 얼굴의 움직임데이터로부터 타원근사를 이용하는 방식을 제안하였다. 또한 카메라는 팬틸트 장치에 탑재되어서 사람의 얼굴을 추적하도록 하였다.

  • PDF

Vehicle Color Recognition Using Neural-Network (신경회로망을 이용한 차량의 색상 인식)

  • Kim, Tae-hyung;Lee, Jung-hwa;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.731-734
    • /
    • 2009
  • In this paper, we propose the method the vehicle color recognizing in the image including a vehicle. In an image, the color feature vector of a vehicle is extracted and by using the backpropagation learning algorithm, that is the multi-layer perceptron, the recognized vehicle color. By using the RGB and HSI color model the feature vector used as the input of the backpropagation learning algorithm is the feature of the color used as the input of the neural network. The color of a vehicle recognizes as the white, the silver color, the black, the red, the yellow, the blue, and the green among the color of the vehicle most very much found out as 7 colors. By using the image including a vehicle for the performance evaluation of the method proposing, the color recognition performance was experimented.

  • PDF

FE-CBIRS Using Color Distribution for Cut Retrieval in IPTV (IPTV에서 컷 검색을 위한 색 분포정보를 이용한 FE-CBIRS)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.91-97
    • /
    • 2009
  • This paper proposes novel FE-CBIRS that finds best position of a cut to be retrieved based on color feature distribution in digital contents of IPTV. Conventional CBIRS have used a method that utilizes both color and shape information together to classify images, as well as a method that utilizes both feature information of the entire region and feature information of a partial region that is extracted by segmentation for searching. Also, in the algorithm, average, standard deviation and skewness values are used in case of color features for each hue, saturation and intensity values respectively. Furthermore, in case of using partial regions, only a few major colors are used and in case of shape features, the invariant moment is mainly used on the extracted partial regions. Due to these reasons, some problems have been issued in CBIRS in processing time and accuracy so far. Therefore, in order to tackle these problems, this paper proposes the FE-CBIRS that makes searching speed faster by classifying and indexing the extracted color information by each class and by using several cuts that are restricted in range as comparative images.