Proceedings of the Korean Institute of Information and Commucation Sciences Conference (한국정보통신학회:학술대회논문집)
- 2009.10a
- /
- Pages.731-734
- /
- 2009
Vehicle Color Recognition Using Neural-Network
신경회로망을 이용한 차량의 색상 인식
- Kim, Tae-hyung (Dept. of Computer Engineering, Pusan National University) ;
- Lee, Jung-hwa (Dept. of Computer Engineering, Pusan National University) ;
- Cha, Eui-young (Dept. of Computer Engineering, Pusan National University)
- Published : 2009.10.29
Abstract
In this paper, we propose the method the vehicle color recognizing in the image including a vehicle. In an image, the color feature vector of a vehicle is extracted and by using the backpropagation learning algorithm, that is the multi-layer perceptron, the recognized vehicle color. By using the RGB and HSI color model the feature vector used as the input of the backpropagation learning algorithm is the feature of the color used as the input of the neural network. The color of a vehicle recognizes as the white, the silver color, the black, the red, the yellow, the blue, and the green among the color of the vehicle most very much found out as 7 colors. By using the image including a vehicle for the performance evaluation of the method proposing, the color recognition performance was experimented.
본 논문에서는 차량을 포함하고 있는 영상에서 차량의 색상을 인식하는 방법을 제안한다. 영상에서 차량의 색상 특징 벡터를 추출해 다층 신경회로망인 backpropagation 학습 알고리즘을 이용하여 차량의 색상을 인식하게 된다. backpropagation 학습 알고리즘의 입력으로 사용되는 특징벡터는 RGB와 HSI(Hue-Saturation-Intensity) 색상 모델을 이용하여 색상 특징 벡터를 구성하고 각각 신경회로망의 입력으로 사용된다. 차량의 색상 인식은 가장 많이 발견되는 차량의 색상 가운데 7가지 색상으로 흰색, 은색, 검정색, 빨강색, 노란색, 파란색, 초록색으로 인식한다. 제안한 방법의 성능평가를 위해 차량을 포함하고 있는 영상을 이용하여 색상 인식 성능을 실험 하였다.