Journal of the Korea Society of Computer and Information
/
v.18
no.9
/
pp.111-120
/
2013
Uncertainty in Context-aware computing is mainly a consequence of the complexity of context acquisition mechanisms and context processing. The presence of uncertainty may harm the users' confidence in the application, rendering it useless. This paper describes a three-phase strategy to manage uncertainty by identifying its possible sources, representing uncertain information, and determining how to proceed, once uncertain context is detected. The level of effort that is necessary to eliminate the uncertainty of context information affects the reliability of the system, because Sensor network system have no intervention of humans. In this paper, We applied proposed method to the development for the sensor network system, Uncertainty management can be applied a part of the system development life-cycle. It confirmed that result of testing show that detection performance is stable.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.305-308
/
2005
시각 센서를 이용한 환경 및 상황 인식은 로봇의 자동화된 행동을 위해서 매우 중요하다. 실제 환경에서 사람은 주위를 인식할 때 여러 단계의 인식과정을 거친다. 효율적이고 정확한 환경 인식을 위해서는 지능형 로봇의 인식 또한 사람의 인식과정과 같이 다단계로 이루어져야 한다. 또한 실제 환경은 유동적이며 많은 불확실성을 가지고 있으므로 불확실한 상황에 강인한 인식 방법이 필요하다. 이러한 불확실성을 내포한 환경 및 상황 인식에는 베이지안 네트워크를 이용한 인식이 강인하나 복잡한 환경을 하나의 베이지안 네트워크로 인식하는 것은 어렵다. 이 논문에서는 복잡하고 불확실한 환경 인식을 위한 여러 베이지안 네트워크를 사람의 인식과 같은 다단계의 인식 과정으로 구성된 행동 네트워크 기반으로 결합하는 앙상블 기법을 제안한다. 불확실한 상황을 적용한 환경 실험과 로봇 시뮬레이터를 이용한 로봇 실험으로 베이지안 네트워크 앙상블 기법이 환경 인식에 효과적인 것을 확인할 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.152-155
/
2011
최근 사회생활의 다변화로 인한 개인의 질환을 예방하고 건강을 증진시키기 위한 개인 웰니스 관리는 현대 사회의 성인에게는 필수적인 자기 관리에 해당된다. 본 논문는 이러한 웰니스 관리에 적절한 상황 모델로써 상황 데이터를 추론할 수 있는 SWRL 상황규칙과 불확실성을 표현한 베이지안 네트워크를 포함한 통합 온톨로지 기반 상황모델을 제시하였다. 제안한 상황모델에 포함된 추론 규칙은 웰니스 관리에 필요한 상황 서비스를 수행하는 액션들을 정의한다. 즉 상황 온톨로지에 SWRL 규칙을 포함함으로써 주로 웹 시멘틱에 사용되고 있는 OWL 언어를 상황인식 분야의 지식 베이스 구축에도 적합하도록 하였다. 그리고 웰니스 관리를 위해 상황 온톨로지로 표현되는 원시 상황 데이터는 센서 부정확성, 또는 개인 판단기준 차이로 인해 불확실성을 포함하므로, 어떤 논리적 상황 데이터는 불확실성을 고려하여 추론되어야 하기 때문에 본 논문은 상황 온톨로지 및 SWRL 규칙과 함께 베이지안 네트워크를 함께 표현할 수 있게 하여 OWL 상황 온톨로지 기반 규칙 추론뿐만 아니라 확률 추론을 용이하게 하였다.
Proceedings of the Korean Information Science Society Conference
/
2012.06d
/
pp.91-93
/
2012
최근 모바일 컴퓨팅 환경 지원을 실현하기 위한 연구가 전 세계적으로 활발히 진행되고 있으며, 나아가 그 중요성은 점점 더 증가하고 있다. 모바일 컴퓨팅 환경에서 지능형 서비스를 제공하기 위해서는 상황 데이터를 수집하고 적절한 가공을 통해 상황정보로 변환시켜 해석, 추론 및 학습 과정을 거쳐 사용자의 상황에 맞는 적절한 서비스를 제공할 수 있어야 한다. 본 논문은 모바일 환경에서 단일 상황추론의 한계를 개선하는 다중 상황추론과 완전히 형성되지 않은 상황정보를 기반으로 한 상황추론으로 불확실성을 지원하는 다중추론지원 분산형 상황인식 시스템을 제안한다.
Journal of the Korea Society of Computer and Information
/
v.11
no.3
/
pp.239-248
/
2006
Current context-aware applications In ubiquitous computing environments make the assumption that the context they are dealing with is correct. However, in reality, both sensed and interpreted context informations are often uncertain or imperfect. In this paper, we propose a probability extension model to ontology-based model for rep resenting uncertain contexts and use Bayesian networks to resolve about uncertainty of context informations. The proposed model can support the development and operation of various context-aware services, which are required in the ubiquitous computing environment.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.168-171
/
2012
본 논문에서는 모바일 컴퓨팅 환경과 불확실성을 지원하는 다중추론지원 분산형 상황인식 시스템의 지식 베이스(KB: Knowledge Base)를 위한 모델로써 상황정보(OWL), 온톨로지 추론정보(OWL DL), 규칙 추론정보(SWRL), 베이지안 추론정보(PR-OWL)를 통합적으로 표현하는 UniOWL 통합상황모델을 제안한다. 제안한 통합상황모델은 상황정보와 다중 추론정보를 단일 구문, 즉 OWL 구문으로 표현하여 지식베이스 설계를 수월하게 하고 표현을 단순화하는 장점이 있다.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.510-512
/
2012
상황인식 서비스 분야에서 불확실한 데이터를 추론하는 것은 매우 어렵고 복잡하다. 이러한 상황정보들에서 얻어지는 데이터는 불확실성을 내포하고 있어서 불확실한 추론 결과를 초래할 수 있다. 비록 불확실성 문제들을 해결하기 위해 퍼지 이론, 뉴런 네트워크, 동적 베이지안 네트워크, 은닉 마르코프 모델과 같은 여러 종류의 방법들이 제시되었지만 이러한 방법들은 가설들을 하나의 숫자에 의해 신뢰의 정도를 표시하기 때문에 많은 어려움이 있다. 본 논문에서는 사용자들이 제공받는 서비스들에 대하여 만족도를 평가한 후 수집된 데이터를 활용하여 사용자들의 상관 관계를 분석한다. 그리고 Dempster-Shafer 이론을 사용하여 사용자들로부터 측정된 믿음 값을 융합한다. 이는 불확실성 값을 낮추어 추론결과의 정확성을 높이고 증거구간을 재설정하여 사용자들에게 신뢰성 있는 적응형 서비스를 제공하게 한다.
This paper examines the problems of big data analysis education and suggests ways to solve them. Big data is a trend that the characteristic of big data is evolving from V3 to V5. For this reason, big data analysis education must take V5 into account. Because increased uncertainty can increase the risk of data analysis, internal and external structured/semi-structured data as well as disturbance factors should be analyzed to improve the reliability of the data. And when using opinion mining, error that is easy to perceive is variability and veracity. The veracity of the data can be increased when data analysis is performed against uncertain situations created by various variables and options. It is the node analysis of the textom(텍스톰) and NodeXL that students and researchers mainly use in the analysis of the association network. Social network analysis should be able to get meaningful results and predict future by analyzing the current situation based on dark data gained.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.1
/
pp.86-99
/
2011
Due to the uncertainty of intention recognition for behaviors of users, the intention is differently recognized according to the situation for the same behavior by the same user, the accuracy of user intention recognition by minimizing the uncertainty is able to be improved. This paper suggests a novel ontology-based method to recognize user intentions, and able to minimize the uncertainties that are the obstacles against the precise recognition of user intention. This approach creates ontology for user intention, makes a hierarchy and relationship among user intentions by using RuleML as well as Dynamic Bayesian Network, and improves the accuracy of user intention recognition by using the defined RuleML as well as the gathered sensor data such as temperature, humidity, vision, and auditory. To evaluate the performance of robot proactive planning mechanism, we developed a simulator, carried out some experiments to measure the accuracy of user intention recognition for all possible situations, and analyzed and detailed described the results. The result of our experiments represented relatively high level the accuracy of user intention recognition. On the other hand, the result of experiments tells us the fact that the actions including the uncertainty get in the way the precise user intention recognition.
Kim, Jonghoon;Lee, Seokjun;Kim, Dongha;Kim, Incheol
Journal of KIISE
/
v.43
no.12
/
pp.1365-1375
/
2016
One of the most important capabilities for autonomous service robots working in living environments is to recognize and understand the correct context in dynamically changing environment. To generate high-level context knowledge for decision-making from multiple sensory data streams, many technical problems such as multi-modal sensory data fusion, uncertainty handling, symbolic knowledge grounding, time dependency, dynamics, and time-constrained spatio-temporal reasoning should be solved. Considering these problems, this paper proposes an effective dynamic context management and spatio-temporal reasoning method for intelligent service robots. In order to guarantee efficient context management and reasoning, our algorithm was designed to generate low-level context knowledge reactively for every input sensory or perception data, while postponing high-level context knowledge generation until it was demanded by the decision-making module. When high-level context knowledge is demanded, it is derived through backward spatio-temporal reasoning. In experiments with Turtlebot using Kinect visual sensor, the dynamic context management and spatio-temporal reasoning system based on the proposed method showed high performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.