• Title/Summary/Keyword: 상황기반 유사도

Search Result 368, Processing Time 0.03 seconds

Mobile Context Based User Behavior Pattern Inference and Restaurant Recommendation Model (모바일 컨텍스트 기반 사용자 행동패턴 추론과 음식점 추천 모델)

  • Ahn, Byung-Ik;Jung, Ku-Imm;Choi, Hae-Lim
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.535-542
    • /
    • 2017
  • The ubiquitous computing made it happen to easily take cognizance of context, which includes user's location, status, behavior patterns and surrounding places. And it allows providing the catered service, designed to improve the quality and the interaction between the provider and its customers. The personalized recommendation service needs to obtain logical reasoning to interpret the context information based on user's interests. We researched a model that connects to the practical value to users for their daily life; information about restaurants, based on several mobile contexts that conveys the weather, time, day and location information. We also have made various approaches including the accurate rating data review, the equation of Naïve Bayes to infer user's behavior-patterns, and the recommendable places pre-selected by preference predictive algorithm. This paper joins a vibrant conversation to demonstrate the excellence of this approach that may prevail other previous rating method systems.

Use Case Points Estimation for the Software Cost Appraisal (소프트웨어 개발비 감정을 위한 유스케이스 점수 추정)

  • Kwon, Ki-Tae
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The software development cost appraisal is treated as a part of the program completion appraisal, and the software engineering methodology is applied. In particular, software cost estimation techniques have been actively applied. For more information about the software development costs calculation, we can refer to the "SW cost estimation guide". Although successful appraisal of a number of development costs based on the guide has been processed, but a number of cases requiring discussion of appraisal results have been discovered. In this study, we propose a use case-based size estimation method to maintain the accuracy and consistency of size estimation. As a result of performing performance evaluation of the proposed method in an environment similar to the development cost appraisal case, it was proved that the accuracy was improved over the existing function points method.

Data value extraction through comparison of online big data analysis results and water supply statistics (온라인 빅 데이터 분석 결과와 상수도 통계 비교를 통한 데이터 가치 추출)

  • Hong, Sungjin;Yoo, Do Guen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.431-431
    • /
    • 2021
  • 4차 산업혁명의 도래로 사회기반시설물의 계획 및 운영관리에 있어 데이터 분석을 통한 가치추출에 대한 관심은 매우 높은 상황이다. 데이터의 가용성과 접근성, 정부 지원 등을 평가하는 공공데이터 개방지수에서 한국은 1점 만점에 0.93점을 획득하여 경제협력개발기구 회원국 중 1위(2019년 기준)를 할 정도로 매우 높은 수준(평균 0.60점)이다. 그러나 공식적으로 발표 및 배포되는 사회기반시설물 관련 정보와 심도 있는 연구 분석이 필요한 정보는 접근이 여전히 제한적이라 할 수 있다. 특히 대표적인 사회기반시설물인 상수도시스템은 대부분 국가중요시설로 지정되어 있어 다양한 정보를 획득하고 분석하는데 제약이 존재하며, 관련 국가통계인 상수도통계에서는 누수사고 등과 같은 비정상적 상황에 대한 사고지점, 원인 등과 같은 세부정보는 제공하고 있지 않다. 본 연구에서는 웹크롤링 및 빅데이터 분석기술을 활용하여 과거 일정기간 발생한 지자체의 상수도 누수사고 관련 뉴스를 전수조사하고 도출된 사고건수를 국가 공인 정보인 상수도통계자료와 비교·분석하였다. 독립적인 누수사고 기사를 추출하기 위해서 중복기사의 제거, 누수 관련 키워드 정립, 상수도분야 이외의 관련기사 제거 등의 절차가 필요하며, 이와 같은 기법은 R프로그래밍을 통해 구현되었다. 추가적으로 뉴스기사의 자연어 처리기반 정보추출기법을 통해 누수사고 건수 뿐만 아니라 사고발생일, 위치, 원인, 피해정도, 그리고 대상 관로의 크기 등을 획득하여 상수도 통계에서 제시하고 있는 정보보다 많은 가치를 추출하여 연계할 수 있는 방안을 제시하였다. 제시된 방법론을 국내 A광역시에 적용하여 누수사고 건수를 비교한 결과 상수도통계에서 제시하고 있는 누수발생건수와 유사한 규모의 사고건수를 뉴스기사분석을 통해 도출할 수 있었다. 제안된 방법론은 추가적인 정보의 추출이 가능하다는 점에서 향후 활용성이 높을 것으로 기대된다.

  • PDF

Genetic Algorithm based B-spline Fitting for Contour Extraction from a Sequence of Images (연속 영상에서의 경계추출을 위한 유전자 알고리즘 기반의 B-spline 적합)

  • Heo Hoon;Lee JeongHeon;Chae OkSam
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.357-365
    • /
    • 2005
  • We present a B-spline fitting method based on genetic algorithm for the extraction of object contours from the complex image sequence, where objects with similar shape and intensity are adjacent each other. The proposed algorithm solves common malfitting problem of the existing B-spline fitting methods including snakes. Classical snake algorithms have not been successful in such an image sequence due to the difficulty in initialization and existence of multiple extrema. We propose a B-spline fitting method using a genetic algorithm with a new initial population generation and fitting function, that are designed to take advantage of the contour of the previous slice. The test results show that the proposed method extracts contour of individual object successfully from the complex image sequence. We validate the algorithm by false-positive/negative errors and relative amounts of agreements.

Music Therapy Counseling Recommendation Model Based on Collaborative Filtering (협업 필터링 기반의 음악 치료 상담 추천 모델)

  • Park, Seong-Hyun;Kim, Jae-Woong;Kim, Dong-Hyun;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.31-36
    • /
    • 2019
  • Music therapy, a field that convergence music and treatment, which play a fundamental role in personality formation, possesses diverse and complex treatment methods. Music therapists in charge of music therapy may experience the same phenomenon as countertransference in consultation with clients. In addition, experiencing psychological burnout, there are many difficulties in reaching the final goal of music therapy. In this paper, we provide a collaborative filtering-based music therapy consultation data recommendation model for smooth music therapy consultation with clients who visited for music therapy. The proposed model grasps the similarity between the conventional consultation data and the new consultant data through the euclidean distance algorithm. This is to recommend similar consultation materials. Since music therapists can provide optimal consultation materials for consultants who need music therapy, smooth consultation is expected.

Method of Similarity Hash-Based Malware Family Classification (유사성 해시 기반 악성코드 유형 분류 기법)

  • Kim, Yun-jeong;Kim, Moon-sun;Lee, Man-hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.945-954
    • /
    • 2022
  • Billions of malicious codes are detected every year, of which only 0.01% are new types of malware. In this situation, an effective malware type classification tool is needed, but previous studies have limitations in quickly analyzing a large amount of malicious code because it requires a complex and massive amount of data pre-processing. To solve this problem, this paper proposes a method to classify the types of malicious code based on the similarity hash without complex data preprocessing. This approach trains the XGBoost model based on the similarity hash information of the malware. To evaluate this approach, we used the BIG-15 dataset, which is widely used in the field of malware classification. As a result, the malicious code was classified with an accuracy of 98.9% also, identified 3,432 benign files with 100% accuracy. This result is superior to most recent studies using complex preprocessing and deep learning models. Therefore, it is expected that more efficient malware classification is possible using the proposed approach.

A Study on the Image Search System using Mobile Internet (사례 기반 추론법을 이용한 오델로 게임 개발에 관한 연구)

  • Song, Eun-Jee
    • Journal of Digital Contents Society
    • /
    • v.12 no.2
    • /
    • pp.217-223
    • /
    • 2011
  • AI(Artificial Intelligence) refers to the area of computer engineering and IT technology that focuses on the methodology and creation of intelligent agents. The Othello game is often produced with AI, since it is played with relatively simple rules on a board and on a limited space of 8 rows and 8 columns. Previous algorithms take longer time than desirable and often fail to face new circumstances, as they search for all the possible cases and rules. In order to solve this crucial weakness, we propose that a CBR algorithm be applied to Orthello. Case-Based Reasoning(CBR), is the process of solving new problems based on the solutions of the past similar problems. We can apply this process to Othello and expedite the process of computer reasoning for a solution to new cases based on the data from accumulated past cases. Then, these new solutions are dynamically added to the set of past cases so that it becomes harder for players(users) to be able to read the pattern. The proposed system in which a CBR algorithm is applied to the Othello game makes the computation process faster and the game harder to play.

A design of Customized Community Service System based on user-behavior analysis on social network (소셜 네트워크 사용자 행위의 속성 분석을 통한 맞춤형 커뮤니티 서비스 시스템 설계)

  • Shin, Eun-se;Kim, Myung-june;Han, So-ra;Oh, Eun-ji;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.190-192
    • /
    • 2012
  • 최근 소셜 네트워크 서비스는 언제 어디서나 정보를 누구라도 손쉽게 전달하고 볼 수 있는 수단으로 각광받고 있다. 소셜 네트워크 서비스의 주요한 특징은 사람과 사람, 사람과 정보, 정보와 정보 간의 관계 네트워크로서, 사용자가 능동적으로 참여한다는 것이다. 하지만 범람하는 수많은 정보들 속에서 사용자가 직접 정보를 검색 및 분류해야 하는 과정은 사람과 정보간의 관계 네트워크 측면에서 소셜의 의미를 충족하지 못한다. 이러한 기존의 정보 활용법은 사용자의 선호도에 따른 맞춤형 정보의 수용과 공유를 제시하지 못하고 있다. 본 연구에서 설계된 사용자 맞춤형 서비스 시스템은 사용자의 상황인식 속성정보와 이에 따른 선호도를 평가하는 알고리즘을 기반으로 하여 보다 효율적인 커뮤니티 공간이 제공될 수 있는 맞춤형 커뮤니티 서비스 시스템을 설계 제안한다. 제안된 시스템에서는 소셜 네트워크 서비스에서 사용자가 텍스트를 읽거나 작성하는 행위를 바탕으로 사용자의 관심사를 제공된 알고리즘으로 분석하여 사용자의 선호도에 따른 정보를 분류하고, 사용자의 인적정보로부터 선별한 유사 사용자들을 통해 신뢰성이 높은 정보를 우선적으로 선출한다. 따라서 사용자의 속성과 선호도를 고려한 상황인식 정보를 제공함으로써 사용자가 직접 정보를 검색 및 분류하는 과정을 단축하고 정보의 신뢰성을 향상할 수 있는 방법을 제시한다. 이러한 상황인식 기반의 맞춤형 커뮤니티 서비스 시스템은 실시간으로 많은 정보가 공유되는 서비스에서 다양하게 적용되어 인터넷 신문, 타겟 마케팅 광고 등의 응용분야에서 다양한 정보제공 서비스 시스템으로 적용될 수 있을 것으로 본다.

  • PDF

A Study on Automatic Discovery and Summarization Method of Battlefield Situation Related Documents using Natural Language Processing and Collaborative Filtering (자연어 처리 및 협업 필터링 기반의 전장상황 관련 문서 자동탐색 및 요약 기법연구)

  • Kunyoung Kim;Jeongbin Lee;Mye Sohn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.127-135
    • /
    • 2023
  • With the development of information and communication technology, the amount of information produced and shared in the battlefield and stored and managed in the system dramatically increased. This means that the amount of information which cansupport situational awareness and decision making of the commanders has increased, but on the other hand, it is also a factor that hinders rapid decision making by increasing the information overload on the commanders. To overcome this limitation, this study proposes a method to automatically search, select, and summarize documents that can help the commanders to understand the battlefield situation reports that he or she received. First, named entities are discovered from the battlefield situation report using a named entity recognition method. Second, the documents related to each named entity are discovered. Third, a language model and collaborative filtering are used to select the documents. At this time, the language model is used to calculate the similarity between the received report and the discovered documents, and collaborative filtering is used to reflect the commander's document reading history. Finally, sentences containing each named entity are selected from the documents and sorted. The experiment was carried out using academic papers since their characteristics are similar to military documents, and the validity of the proposed method was verified.

An Evacuation Route Assignment for Multiple Exits based on Greedy Algorithm (탐욕 알고리즘 기반 다중 출구 대피경로 할당)

  • Lee, Min Hyuck;Nam, Hyun Woo;Jun, Chul Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.69-80
    • /
    • 2016
  • Some studies were conducted for the purpose of minimizing total clearance time for rapid evacuation from the indoor spaces when disaster occurs. Most studies took a long time to calculate the optimal evacuation route that derived minimum evacuation time. For this reason, this study proposes an evacuation route assignment algorithm that can shorten the total clearance time in a short operational time. When lots of exits are in the building, this algorithm can shorten the total clearance time by assigning the appropriate pedestrian traffic volume to each exit and balances each exit-load. The graph theory and greedy algorithm were utilized to assign pedestrian traffic volume to each exit in this study. To verify this algorithm, study used a cellular automata-based evacuation simulator and experimented various occupants distribution in a building structure. As a result, the total clearance time is reduced by using this algorithm, compared to the case of evacuating occupants to the exit within shortest distance. And it was confirmed that the operation takes a short time In a large building structure.