Genetic Algorithm based B-spline Fitting for Contour Extraction from a Sequence of Images

연속 영상에서의 경계추출을 위한 유전자 알고리즘 기반의 B-spline 적합

  • 허훈 (경희대학교 컴퓨터공학과) ;
  • 이정헌 (경희대학교 컴퓨터공학과) ;
  • 채옥삼 (경희대학교 컴퓨터공학과)
  • Published : 2005.05.01

Abstract

We present a B-spline fitting method based on genetic algorithm for the extraction of object contours from the complex image sequence, where objects with similar shape and intensity are adjacent each other. The proposed algorithm solves common malfitting problem of the existing B-spline fitting methods including snakes. Classical snake algorithms have not been successful in such an image sequence due to the difficulty in initialization and existence of multiple extrema. We propose a B-spline fitting method using a genetic algorithm with a new initial population generation and fitting function, that are designed to take advantage of the contour of the previous slice. The test results show that the proposed method extracts contour of individual object successfully from the complex image sequence. We validate the algorithm by false-positive/negative errors and relative amounts of agreements.

본 연구에서는 유사한 여러 물체들이 인접하여 나타나는 영상열로부터 물체들을 개별적으로 분리할 수 있는 B-spline 적합(fitting) 알고리즘을 제안한다. 기존의 스네이크(snake) 알고리즘들은 초기화의 어려움과 다수의 극점 존재로 인해서 이러한 영상자료에서 물체의 영역을 개별적으로 분리하는 데는 어려움이 있다. 본 연구에서는 이 문제를 극복하고 다양한 형태의 물체가 인접해 있는 유사한 물체들로부터 효과적으로 분할 할 수 있는 유전자(genetic) 알고리즘 기반 B-spline 적합방안을 제안한다. 실제 상황을 고려하여 생성된 영상자료와 실제 치아 CT 영상을 이용한 평가에서 제안된 방법은 서로 인접해 있는 유사한 형태와 자기의 물체들을 개별적으로 정확하게 분할할 수 있음을 보였다. 제안된 알고리즘의 결과는 이상적으로 추출된 영역과의 일치성과 false positive 오류 그리고 false negative오류가 계산되어 검증되었다.

Keywords

References

  1. Han, C., Kerwin, W. S., 'Detecting objects in image sequences using rule-based control in an active contour model,' IEEE Trans. on Biomedical Engineering, vol. 50, no. 6, pp.705-710, 2003 https://doi.org/10.1109/TBME.2003.812190
  2. Ballerini, L., Bacchi, L., 'Multiple genetic snakes for bone segmentation,' EvoWorkshops, vol. 2611 of LNCS., Springer, pp.346-356, 2003 https://doi.org/10.1007/3-540-36605-9_32
  3. Klemencic, J., Valencic, V., Pecaric, N., 'Deformable contour based algorithm for segmentation of the hippocampus from MRI,' CAIP., vol. 2124 of LNCS., Springer, pp. 298-308, 2001
  4. M. Kass, A. Witkin and D. Terzopoulos 'Snakes, active contour models,' International Journal of Computer Vision, Vol.1, 1987, pp.321-331 https://doi.org/10.1007/BF00133570
  5. Brigger, P., Hoeg, J., Unser, M., 'B-spline snakes: A flexible tool for parametric contour detection,' IEEE Trans. on Image Processing, vol. 9, no. 9, pp.1484-1496, 2000 https://doi.org/10.1109/83.862624
  6. Menet, S., Saint-Marc, P., Medioni, G., 'Active contour models: Overview, implementation and applications,' Systems, Man and Cybernetics, IEEE Conf., pp.194-199, 1990 https://doi.org/10.1109/ICSMC.1990.142091
  7. Cerrolaza, M., Annicchiarico, W., Martinez, M., 'Optimization of 2D boundary element models using B-splines and genetic algorithms,' Engineering analysis with boundary elements, pp.427-440, 2000 https://doi.org/10.1016/S0955-7997(00)00006-0
  8. Ooi, C., Liatsis, P., 'Co-evolutionary-based active contour models in tracking of moving obstacles,' ADAS., IEEE Conf., pp.58-62, 2001 https://doi.org/10.1049/cp:20010499
  9. MacEachern, L. A., Manku, T., 'Genetic algorithms for active contour optimization,' IEEE Int. Sym. for Circuits and Systems, pp.229-232, 1998 https://doi.org/10.1109/ISCAS.1998.698801
  10. Farin, G., Curves and surfaces for CAGD., 4th Ed., pp.141-168, Academic Press, 1996
  11. Toet, A., Hajema, W. P., 'Genetic contour matching,' Pattern Recognition Letters 16, pp.849-856, 1995 https://doi.org/10.1016/0167-8655(95)00015-9
  12. Chong, E. K. P., Zak, S. H., An introduction to optimization, 2nd Ed., pp.237-250, Wiley-Interscience, 2001
  13. Ahn, B., 'A study on a high-speed Gaussian random number generator,' IEEE Asia Pacific Conf. on Circuits and Systems, pp.30-32, 1996 https://doi.org/10.1109/APCAS.1996.569211
  14. Liu, S., Ma, M., 'Seed-growing segmentation of 3D surfaces from CT-contour data,' Computer-Aided Design vol. 31, pp.517-536, 1999 https://doi.org/10.1016/S0010-4485(99)00050-0
  15. Srinivas, M., Patnaik, L. M., 'Adaptive probabilities of crossover and mutation in genetic algorithms,' IEEE Trans. Systems, Man and Cybernetics vol. 24 no. 4, pp.656-667, 1994 https://doi.org/10.1109/21.286385
  16. Zijdenbos, A.P., Dawant, B. M., Margolin, R. A, Palmer, A C., 'Morphometric analysis of white matter lesions in MR images: Method and validation,' IEEE Trans. Medical Imaging, vol. 13, pp.716-724, 1994 https://doi.org/10.1109/42.363096