• Title/Summary/Keyword: 상품리뷰요약

Search Result 15, Processing Time 0.022 seconds

A Sentiment Classification Method Using Context Information in Product Review Summarization (상품 리뷰 요약에서의 문맥 정보를 이용한 의견 분류 방법)

  • Yang, Jung-Yeon;Myung, Jae-Seok;Lee, Sang-Goo
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.254-262
    • /
    • 2009
  • As the trend of e-business activities develop, customers come into contact with products through on-line shopping sites and lots of customers refer product reviews before the purchasing on-line. However, as the volume of product reviews grow, it takes a great deal of time and effort for customers to read and evaluate voluminous product reviews. Lately, attention is being paid to Opinion Mining(OM) as one of the effective solutions to this problem. In this paper, we propose an efficient method for opinion sentiment classification of product reviews using product specific context information of words occurred in the reviews. We define the context information of words and propose the application of context for sentiment classification and we show the performance of our method through the experiments. Additionally, in case of word corpus construction, we propose the method to construct word corpus automatically using the review texts and review scores in order to prevent traditional manual process. In consequence, we can easily get exact sentiment polarities of opinion words in product reviews.

Sentiment analysis of online food product review using ensemble technique (앙상블 기법을 활용한 온라인 음식 상품 리뷰 감성 분석)

  • Kim, Han-Min;Park, Kyungbo
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.115-122
    • /
    • 2019
  • In the online marketplace, consumers are exposed to various products and freely express opinions. As consumer product reviews have a important effect on the success of online markets and other consumers, online market needs to accurately analyze the consumers' emotions about their products. Text mining, which is one of the data analysis techniques, can analyze the consumer's reviews on the products and efficiently manage the products. Previous studies have analyzed specific domains and less than 20,000 data, despite the different accuracy of the analysis results depending on the data domain and size. Further, there are few studies on additional factors that can improve the accuracy of analysis. This study analyzed 72,530 review data of food product domain that was not mainly covered in previous studies by using ensemble technique. We also examined the influence of summary review on improving accuracy of analysis. As a result of the study, this study found that Boosting ensemble technique has the highest accuracy of analysis. In addition, the summary review contributed to improving accuracy of the analysis.

Product Review Data and Sentiment Analytical Processing Modeling (상품 리뷰 데이터와 감성 분석 처리 모델링)

  • Yeon, Jong-Heum;Lee, Dong-Joo;Shim, Jun-Ho;Lee, Sang-Goo
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.4
    • /
    • pp.125-137
    • /
    • 2011
  • Product reviews in online shopping sites can serve as a useful guideline to buying decisions of customers. However, due to the massive amount of such reviews, it is almost impossible for users to read all the product reviews. For this reason, e-commerce sites provide users with useful reviews or statistics of ratings on products that are manually chosen or calculated. Opinion mining or sentiment analysis is a study on automating above process that involves firstly analyzing users' reviews on a product to tell if a review contains positive or negative feedback, and secondly, providing a summarized report of users' opinions. Previous researches focus on either providing polarity of a user's opinion or summarizing user's opinion on a feature of a product that result in relatively low usage of information that a user review contains. Actual user reviews contains not only mere assessment of a product, but also dissatisfaction and flaws of a product that a user experiences. There are increasing needs for effective analysis on such criteria to help users on their decision-making process. This paper proposes a model that stores various types of user reviews in a data warehouse, and analyzes integrated reviews dynamically. Also, we analyze reviews of an online application shopping site with the proposed model.

A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary (반자동으로 구축된 의미 사전을 이용한 한국어 상품평 분석 시스템)

  • Myung, Jaeseok;Lee, Dongjoo;Lee, Sang-Goo
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.68-75
    • /
    • 2007
  • 웹 2.0 시대에 사용자가 작성한 리뷰는 다양한 활용성을 갖는 가치있는 데이터이다. 특히 온라인 쇼핑몰에서의 상품평은 사용자의 구매 결정에 직접적인 영향을 미치는 중요한 정보이다. 본 논문에서는 실제 쇼핑몰 사이트에 있는 상품평을 분석하여 각 상품의 특징과 이에 대한 사용자의 의견을 요약하는 상품평 분석 시스템을 설계하고 구현하였다. 각 상품평을 분석하는 과정에서는 자연언어처리 기법과 의미 사전을 사용한다. 의미 사전에는 상품의 특징을 표현하는 어휘와 각 어휘들의 극성(Polarity) 정보들을 반자동으로 정의할 수 있도록 구현하였다. 이에 더하여 문맥에 따라 다른 의미를 갖는 어휘에 대한 처리 방법에 대해서도 논의한다. 실험은 2개 상품 분류의 63개 실제 리뷰를 대상으로 수행하였으며 결과로 평균 88.94%의 정확률, 47.92%의 재현율을 나타냈다.

  • PDF

A product review summarization system using a scoring of features (상품특징별 점수화를 이용한 상품리뷰요약 시스템의 설계 및 구현)

  • Yang, Jung-Yeon;Myung, Jae-Seok;Lee, Sang-Goo
    • Proceedings of the Korea Database Society Conference
    • /
    • 2008.05a
    • /
    • pp.339-347
    • /
    • 2008
  • As a number of product information is increasing in online markets, customers can purchase products with no spatial and time problems. However, in case of an online market, since customers can't see products directly, others' reviews make a big influence to customers. Meanwhile, it is a burden to read all reviews about some products. Therefore, we need to provide refined information to customers as summarizing whole product reviews. In this paper, we explain about the product review summarization system which can provide to customers as show evaluation scores of product features. Natural Language Processing skills and computational statistics are utilized for summarization. Customers can get chances to buy a feasible product that he wants to get through this system. Moreover, Enterprises can find out the needs of customers deeply.

  • PDF

Automatic Extraction of Alternative Words for Product Review Summarization (상품리뷰요약을 위한 대체어 자동추출)

  • An, Mi-Hee;Baik, Jong-Bum;Lee, Su-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.501-503
    • /
    • 2012
  • 오피니언 마이닝에서 특징기반으로 상품평을 요약할 때, 동일한 상품의 같은 특징에 대한 사용자의 표현이 일치하지 않아 같은 특징을 다른 것으로 인식하는 오류가 발생되어 효과적인 분석을 하는데 어려움이 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 온라인쇼핑몰의 상품평에서 명사와 형용사쌍 말뭉치를 이용하여 연관단어뭉치를 추출하고, 상관성이 높은 형용사를 각 명사의 특징으로 이용하여 대체어 목록을 자동으로 추출하는 방법을 제안한다.

Product reputation mining based on sentiment analysis (감성 분석 기반의 제품 평판 마이닝)

  • Song, In-Hwan;Han, Jinju;On, Byung-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.429-433
    • /
    • 2019
  • 스마트폰 보급의 확산으로 제품 구매 시 웹 사이트 및 SNS를 이용하여 제품 리뷰를 참고하는 소비자들이 증가하고 있다. 전자 상거래 사이트의 제품 리뷰는 구매 예정자들에게 유용한 정보로 활용되곤 한다. 하지만 구매 예정자가 직접 제품에 대한 리뷰 데이터를 찾아 전체 내용을 일일이 읽고 분석해야하기 때문에 시간이 오래 걸릴뿐만 아니라 가공되지 않는 데이터가 줄 수 있는 정보는 한정적이다. 또한 이러한 리뷰들은 상품의 특징을 파악하기에도 어려움이 있다. 본 논문에서는 제품의 주요 이슈를 추출하고 주요 이슈에 대한 감성 분석과 감성 요약을 통해 제품 분석 및 평가를 제공하는 시스템을 설계 및 구현하였다. 이를 휴대폰 제품에 적용하여 구축한 시스템을 통해 소비자가 방대한 양의 제품의 리뷰 데이터를 분석할 필요 없이 제품의 주요 이슈와 가공된 분석 결과를 시각적으로 빠르게 제공받을 수 있음을 보였다.

  • PDF

A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary (반자동으로 구축된 의미 사전을 이용한 한국어 상품평 분석 시스템)

  • Myung, Jae-Seok;Lee, Dong-Joo;Lee, Sang-Goo
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.392-403
    • /
    • 2008
  • User reviews are valuable information that can be used for various purposes. In particular, the product reviews on online shopping sites are important information which can directly affect the purchasing decision of the customers. In this paper, we present our design and implementation of a system for summarizing the customer's opinion and the features of each product by analyzing reviews on a commercial shopping site. During the analysis process, several natural language processing(NLP) techniques and the semantic dictionary were used. The semantic dictionary contains vocabularies that are used to express product features and customer's opinions. And it was constructed in semi-automatic way with the help of the tool we implemented. Furthermore, we discuss how to handle the vocabularies that have different meanings according to the context. We analyzed 1796 reviews about 20 products of 2 categories collected from an actual shopping site and implemented a novel ranking system. We obtained 88.94% for precision and 47.92% for recall on extracting opinion expression, which means our system can be applicable for real use.

Multi Sentence Summarization Method using Similarity Clustering of Word Embedding (워드 임베딩의 유사도 클러스터링을 통한 다중 문장 요약 생성 기법)

  • Lee, Pil-Won;Song, Jin-su;Shin, Yong-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.290-292
    • /
    • 2021
  • 최근 인코더-디코더 구조의 자연어 처리모델이 활발하게 연구가 이루어지고 있다. 인코더-디코더기반의 언어모델은 특히 본문의 내용을 새로운 문장으로 요약하는 추상(Abstractive) 요약 분야에서 널리 사용된다. 그러나 기존의 언어모델은 단일 문서 및 문장을 전제로 설계되었기 때문에 기존의 언어모델에 다중 문장을 요약을 적용하기 어렵고 주제가 다양한 여러 문장을 요약하면 요약의 성능이 떨어지는 문제가 있다. 따라서 본 논문에서는 다중 문장으로 대표적이고 상품 리뷰를 워드 임베딩의 유사도를 기준으로 클러스터를 구성하여 관련성이 높은 문장 별로 인공 신경망 기반 언어모델을 통해 요약을 수행한다. 제안하는 모델의 성능을 평가하기 위해 전체 문장과 요약 문장의 유사도를 측정하여 요약문이 원문의 정보를 얼마나 포함하는지 실험한다. 실험 결과 기존의 RNN 기반의 요약 모델보다 뛰어난 성능의 요약을 수행했다.

Survey on Fake Review Detection of E-commerce Sites (전자 상거래 사이트의 가짜 리뷰 판별 기법 조사)

  • Ji, Chengzhang;Zhang, Jinhong;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.79-81
    • /
    • 2014
  • People increasingly rely on sources of information from E-commerce reviews. Product reviews is an important determinant of potential customers' buying choices. They are also utilized by product manufacturers to find problems of their products and to collect competitive intelligence information about their competitors. Unfortunately, it is well-known that many online product reviews are not made by genuine costumers of products. Reviewers could write some undeserving positive reviews to promote or fake negative reviews to defame some certain product, and we call them fake product reviews. Fake product review detection makes an attempt to detect fake reviews and removes them to restore the truthful ones for readers. To the best of our knowledge, there is still less published study on this problem. In this paper, we make a survey and an attempt to give a brief overview on fake product review detection. The related work of fake product review detection is presented including web spam and spam email. Then some methods to detect fake reviews are introduced and summarized. The trend of fake product review detection is concluded finally.

  • PDF