• Title/Summary/Keyword: 상태 분류

Search Result 2,296, Processing Time 0.032 seconds

On the Classification of Normal, Benign, Malignant Speech Using Neural Network and Cepstral Method (Cepstrum 방법과 신경회로망을 이용한 정상, 양성종양, 악성종양 상태의 식별에 관한 연구)

  • 조철우
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.399-402
    • /
    • 1998
  • 본 논문에서는 환자의 음성을 정상, 양성종양, 악성종양으로 분류하는 실험을 켑스트럼 파라미터를 통한 음원분리와 신경회로망을 이용하여 수행하고 그 결과를 보고한다. 기존의 장애음성 데이터베이스에는 정상음성과 양성종양의 경우만 수록되어 있었고 외국의 환자들을 대상으로 한 경우만 있었기 때문에 국내의 환자들에게 직접 적용할 경우 어떠한 결과가 나올지 예측하기가 어려웠다. 최근 부산대학교 이비인후과팀에서 수집한 국내의 정상, 양성, 악성종양의 경우에 대한 데이터베이스를 분석하고 신경회로망에 의해 분류함으로써 사람의 음성신호만에 의한 후두질환이 식별이 가능하였다. 본 실험에서는 식별 파라미터로 음성신호의 선형예측오차신호에 관한 켑스트럼으로부터 음원비인 HNRR을 구하여 Jitter, Shimmer와 함께 사용하였다. 신경회로망은 입, 출력 층과 한 개의 은닉층을 갖는 다층신경망을 이용하였으며, 식별은 두단계로 나누어 정상과 비정상을 분류한 후 다시 비정상을 양성과 악성으로 분류하였다[1].

  • PDF

3D Mesh Compression Based on Layer of Mesh and Operation Code (메쉬의 계층 및 연산코드 기반 3차원 메쉬 압축)

  • 이민정;권용무;김창헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.415-417
    • /
    • 2002
  • 날로 커져가는 3D 모델을 효율적으로 사용하기 위한 노력으로 압축처리 방법들이 연구되고 있다. 본 논문에서는 3D 모델의 메쉬를 Layer로 분할하여 Vertex Layer와 Triangle Layer를 생성 후, 삼각형들을 몇가지 연산코드로 분류하여 압축(compression)하는 방법을 제안한다. Triangle Layer는 기본 정점으로부터 연결된 선분의 정점들로 이루어진 Vertex Layer의 쌍을 이용하여 만들어진다. 이 Triangle Layer에 해당 되는 삼각형들의 연결 정보를 제안한 연산코드로 분류하고, 이것을 엔트로피 코딩하여 3D 모델을 압축한다. 이 기법은 삼각형의 형태를 기준으로 한 개나 두 개의 삼각형을 하나의 연산코드로 분류하거나 삼각형의 연결 상황에 따라 하나의 연산코드로 분류하여 연결정보를 표현한다. 복원(decompression)시에는 연산 코드를 이용하여 삼각형의 연결정보를 뽑아내면 원 상태의 3D 모델을 획득할 수 있다. 이 방법은 연결 정보를 무손실 압축하는 방법으로, 지금까지 제안된 압축기법과 비교할 때, 간단하면서도 월등한 압축 효과를 볼 수 있다.

  • PDF

Numerical Taxonomy of the Tribe Pterostichini Sloane from Korea(II) (한국산 길쭉먼지벌레족의 수리분류(II))

  • Park, Jong Kyun;Kwon, Young Jung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.14
    • /
    • pp.1-14
    • /
    • 1996
  • A numerical taxonomy based on the phenetic characters of 59 Korean Pterostichini species is conducted to determine the effect on the assessment of the 7 different methods combined by 3 similarity or dissimilarity coefficients, using 87 morphological multistate characters.

  • PDF

Development of Deep Learning-Based House-Tree-Person Test Analysis Model (딥러닝 기반 집-나무-사람 검사 분석 모델의 개발)

  • Cho, Seung-Je;Cho, Geon-Woo;Kim, Young-wook
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.558-561
    • /
    • 2021
  • 심리학에서 사람의 심리 상태를 알아보기 위해 사용되는 검사 방법 중, 집-나무-사람 검사(HTP Test)는 피실험자가 그린 집, 나무, 사람을 포함하는 그림을 사용하여 피실험자의 심리를 분석하는 투영 검사법이다. 본 논문에서는 딥러닝 모델을 이용해 HTP Test 에 사용되는 그림을 분석하는 시스템을 제안하며, 성능 평가를 통해 심리학에서의 딥러닝 모델 적용 가능성을 확인한다. 또한 그림 데이터 분석에 적합한 사전 훈련 모델을 개발하기 위해, ImageNet 과 스케치 데이터셋으로 사전 훈련하여 성능을 비교한다. 본 논문에서 제안하는 시스템은 크게 감정 분석을 위한 이미지 객체 추출부, 추출된 객체로 피실험자의 감정을 분류하는 감정 분류부로 구성되어 있다. 객체 추출과 이미지 분류 모두 CNN(Convolution Neural Network) 기반의 딥러닝 모델을 사용하며, 이미지 분류 모델은 서로 다른 데이터셋으로 모델을 사전 훈련한 후, 훈련 데이터셋으로 전이 학습하여 모델의 성능을 비교한다. 그림 심리 분석을 위한 HTP test 스케치 데이터셋은, HTP Test 와 동일하게 피실험자가 3 개 클래스의 집, 나무, 사람의 그림을 그려 자체 수집하였다.

Development of an Text Emotion Classification Model for Assisting Depression Screening (우울증 검진 보조를 위한 텍스트 감정 분류 모델 개발)

  • Chang-Hyun Jung;Sung-Joong Seol;Jae-Hyuk Lee;Ji-Hoo Lim;Keun-Chang Kwak
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.569-570
    • /
    • 2024
  • 본 연구는 감정 분류에 중점을 둔 AI 모델을 개발하는 것을 목표로 한다. KoBERT(Korean Bidirectional Encoder Representations from Transformer) 모델을 활용하여 사용자가 입력한 텍스트를 분석하고 감정 상태를 분류한다. 특히 우울증과 같은 특정 감정을 분류하며, 필요 시 관련 정보를 제공하는 데 중점을 두고 있다. 테스트 결과, Test Accuracy는 0.67, F1-Score는 0.69로 기존 연구보다 향상된 성능을 보였다. 이 모델은 내담자의 감정 분석을 통해 정신건강의학과 전문의의 우울증 진단을 보조하는데 기여한다.

Fast Detection of Disease in Livestock based on Deep Learning (축사에서 딥러닝을 이용한 질병개체 파악방안)

  • Lee, Woongsup;Kim, Seong Hwan;Ryu, Jongyeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1009-1015
    • /
    • 2017
  • Recently, the wide spread of IoT (Internet of Things) based technology enables the accumulation of big biometric data on livestock. The availability of big data allows the application of diverse machine learning based algorithm in the field of agriculture, which significantly enhances the productivity of farms. In this paper, we propose an abnormal livestock detection algorithm based on deep learning, which is the one of the most prominent machine learning algorithm. In our proposed scheme, the livestock are divided into two clusters which are normal and abnormal (disease) whose biometric data has different characteristics. Then a deep neural network is used to classify these two clusters based on the biometric data. By using our proposed scheme, the normal and abnormal livestock can be identified based on big biometric data, even though the detailed stochastic characteristics of biometric data are unknown, which is beneficial to prevent epidemic such as mouth-and-foot disease.

State Machine design to support behavioral response in DTT protocol (불연속 개별시도 훈련에서 행동 반응을 지원하는 상태머신 설계)

  • Yun, Hyuk;Yun, Sang-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.147-149
    • /
    • 2022
  • This paper proposes a state machine design methodology in which an interactive robot that mimics discrete trial training (DTT protocol) can support social interaction training for children with autism. The robot applied to social interaction training uses the response to the provided training stimulus as a quantitative indicator by processing the data received from the sensors measuring the behavioral response of the child. In this process, the state machine is used as information that classifies the state of the acquired data and provides the subsequent stimulus for DTT protocol. Through the joint attentional training, it can be used as evidence-based treatment information by quantitatively classifying the data on the number of sustainable and DTT protocol and the child's response, as well as the current reaction status of the child to the observer performing remote monitoring. At the same time, it was confirmed that it is possible to properly respond to misrecognition situations.

  • PDF

Landuse Mapping using KOMPSAT-2 Satellite Image in River Basin Flood Mitigation Planning (유역 홍수계획수립에서 KOMPSAT-2 영상을 이용한 토지이용도 제작)

  • Shin, Hyoung-Sub;Kim, Kyu-Ho;Jung, Sang-Hwa;Na, Sang-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.635-635
    • /
    • 2012
  • 최근 공공분야 및 민간분야에서 고해상도 위성영상의 활용이 높아짐에 따라 이를 이용하여 수자원 분야의 치수계획 및 안전도 평가, 유역 홍수대응기술 분야에서의 다양한 활용이 비약적으로 증대되고 있는 실정이다. 고해상도 위성영상의 활용은 국지적 규모의 토지이용 변화 및 대기 상태의 모니터링을 위한 효과적인 기술로 인식되어 왔다. 우리나라의 KOMPSAT-2 위성은 GSD(Ground Sample Distance) 1m급의 전정색 영상과 4m급의 다중분광 영상을 동시에 제공하는 고해상도 위성이다. 그러나 다중분광센서의 복잡성과 보안성에 의해 영상이 제한적으로 제공되고 있어 KOMPSAT-2 위성영상을 이용한 다양한 연구가 미흡한 실정이다. 한편, 토지이용도의 제작은 다중분광 영상을 제공하는 위성영상을 이용하여 제작된다. 다중분광 영상이 제공하는 분광정보 및 공간정보 등으로 토지이용분류를 수행하거나 멀티센서 자료의 통합을 통한 토지이용분류 기법을 개발하여 제작하였다. 그러나 대부분 GSD 10m급 이상의 중 저해상도 위성영상을 이용하여 제작이 이루어져 수평위치 정확도 및 세부정보의 제공이 낮으며, 정보의 최신성이 결여되어 있다. 특히, 유역 치수안전도 평가를 위한 토지이용도 작성은 매우 중요한 부분을 차지하고 있으므로 이에 대한 연구가 필요하다. 이에 본 연구에서는 섬강유역을 대상으로 KOMPSAT-2 영상을 이용하여 유역 치수안전도 평가 및 치수계획 수립기술을 위한 토지이용도를 작성하고자 한다. 토지이용 분류방법은 감독분류와 무감독분류 방법을 조합하여 분류정확도를 개선시키는 하이브리드분류(hybrid classification) 방법을 이용하였으며, 분류기준의 선정은 환경부 토지이용분류 기준을 참고하여 1단위와 2단위 분류체계를 혼용하였다. 또한, 분류 후 후처리를 통하여 잡음을 제거하고 환경부의 토지이용도를 참조하여 육안판독으로 오분류된 지역을 보정하였다. 새롭게 작성된 토지이용도는 기존의 토지이용도와 비교 분석하여 토지이용변화 상황을 파악하고, 이를 통하여 KOMPSAT-2 영상의 토지이용도 개선 가능성을 검토하였다.

  • PDF

A Control Method of ASMR Contents through Attention and Meditation Detection Based on Internet of Things (사물인터넷 기반의 집중도 및 명상도 검출을 통한 ASMR 콘텐츠 제어 기법)

  • Kim, Minchang;Seo, Jeongwook
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1819-1824
    • /
    • 2018
  • This paper proposes a control method of ASMR(autonomous sensory meridian response) contents to relieve user's stress and improve his attention. The proposed method measures EEG(electroencephalography), attention, meditation, and eyeblink data from an EEG device and sends them to an oneM2M-compliant IoT(internet of things) server platform through an Android IoT Application. Then a SVM(support vector machine) model is built to classify user's mental health status by using EEG, attention and meditation data collected in the server platform. The ASMR contents are controlled by the mental health status classified by a SVM model and the eyeblink data. When comparing the SVM models according to types of data used, the SVM model with attention and meditation data showed accuracy of 85.7%. It was verified that the proposed control algorithm of ASMR contents properly worked as the mental health status from the SVM model and the eyeblink data changed.

White blood cell image Retrieving & Clustering System (백혈구 이미지 검색 및 구분 시스템)

  • 이성환;유채곤;김지윤;이인경;황치정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.530-532
    • /
    • 1999
  • 백혈구는 형태상으로 임파구, 중성구, 반핵구 등 7~8 종의 정상적인 백혈구 종류가 있으며 비정상적인 백혈구는 변형으로 인하여 수 십 가지가 되어 분류시 많은 어려움이 있다. 백혈구는 질환에 대한 많은 정보를 가지고 있어 질병 유무 및 상태 판단에 절대적으로 필요한 검사로서 현재는 전문가에 의해 백혈구 크기, 색상, 내부 핵유무, 핵의 모양 및 boundary 모양 등을 개인적 판단 기준으로 검사하고 있어 많은 어려움이 있다. 이에 질환별 백혈구 형태 분류 알고리즘과 이에 따른 백혈구 영상 정보 확보 및 검색 시스템을 설계 구현하였다.

  • PDF