Proceedings of the Acoustical Society of Korea Conference (한국음향학회:학술대회논문집)
- 1998.06e
- /
- Pages.399-402
- /
- 1998
On the Classification of Normal, Benign, Malignant Speech Using Neural Network and Cepstral Method
Cepstrum 방법과 신경회로망을 이용한 정상, 양성종양, 악성종양 상태의 식별에 관한 연구
Abstract
본 논문에서는 환자의 음성을 정상, 양성종양, 악성종양으로 분류하는 실험을 켑스트럼 파라미터를 통한 음원분리와 신경회로망을 이용하여 수행하고 그 결과를 보고한다. 기존의 장애음성 데이터베이스에는 정상음성과 양성종양의 경우만 수록되어 있었고 외국의 환자들을 대상으로 한 경우만 있었기 때문에 국내의 환자들에게 직접 적용할 경우 어떠한 결과가 나올지 예측하기가 어려웠다. 최근 부산대학교 이비인후과팀에서 수집한 국내의 정상, 양성, 악성종양의 경우에 대한 데이터베이스를 분석하고 신경회로망에 의해 분류함으로써 사람의 음성신호만에 의한 후두질환이 식별이 가능하였다. 본 실험에서는 식별 파라미터로 음성신호의 선형예측오차신호에 관한 켑스트럼으로부터 음원비인 HNRR을 구하여 Jitter, Shimmer와 함께 사용하였다. 신경회로망은 입, 출력 층과 한 개의 은닉층을 갖는 다층신경망을 이용하였으며, 식별은 두단계로 나누어 정상과 비정상을 분류한 후 다시 비정상을 양성과 악성으로 분류하였다[1].
Keywords