• Title/Summary/Keyword: 상태계측

Search Result 949, Processing Time 0.031 seconds

Suggestion for the improvement of the field measurements on the shotcrete lining (터널 숏크리트 계측의 개선방안)

  • Kim, Hak-Joon;Park, Si-Hyun;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.177-192
    • /
    • 2010
  • The field measurements on the shotcrete lining are usually performed during the tunnel construction. However, the credibility of the measurements is not certain because of the non-stress related strains occurring in the shotcrete, the uncertainty of the deformation modulus of the shotcrete, and the intrinsic difficulties involved in the strain measurements in the shotcrete. The problem related to the field measurements on the shotcrete is investigated using the review of the previous studies and the field measurement performed for this study. A method for the correction of stress measurements at the shotcrete lining, considering the non-stress related strains, is suggested using the literature review and the actual measurements obtained from the non-stress shotcretes. The deformation modulus used for the calculation of the stress acting on the shotcrete is also suggested.

Development and Performance Evaluation of Real-Time Wear Measurement System of TBM Disc Cutter (TBM 디스크 커터 실시간 마모계측 시스템 개발 및 성능검증)

  • Min-Seok Ju;Min-Sung Park;Jung-Joo Kim;Seung Woo Song;Seung Chul Do;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.154-168
    • /
    • 2024
  • The Tunnel Boring Machine (TBM) disc cutter is subjected to wear and damage during the rock excavation process, and the worn disc cutter should be replaced on time. The manual inspection by workers is generally required to determine the disc cutter replacement. In this case, the workers are exposed to dangerous environments, and the measurements are sometimes inaccurate. In this study, we developed a technology that measures the disc cutter wear in real time. From a series of laboratory tests, a magnetic sensor was selected as the wear sensor, and the real-time disc cutter measurement system was developed integrating wireless communication modules, power supply and data processing board. In addition, the measurement system was verified in actual TBM excavation circumstances. As a result, it was confirmed that the accuracy and stability of the system.

Damage estimation for structural safety evaluation using dynamic displace measurement (구조안전도 평가를 위한 동적변위 기반 손상도 추정 기법 개발)

  • Shin, Yoon-Soo;Kim, Junhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.87-94
    • /
    • 2019
  • Recently, the advance of accurate dynamic displacement measurement devices, such as GPS, computer vision, and optic laser sensor, has enhanced the structural monitoring technology. In this study, the dynamic displacement data was used to verify the applicability of the structural physical parameter estimation method through subspace system identification. The subspace system identification theory for estimating state-space model from measured data and physics-based interpretation for deriving the physical parameter of the estimated system are presented. Three-degree-freedom steel structures were fabricated for the experimental verification of the theory in this study. Laser displacement sensor and accelerometer were used to measure the displacement data of each floor and the acceleration data of the shaking table. Discrete state-space model generated from measured data was verified for precision. The discrete state-space model generated from the measured data extracted the floor stiffness of the building after accuracy verification. In addition, based on the story stiffness extracted from the state space model, five column stiffening and damage samples were set up to extract the change rate of story stiffness for each sample. As a result, in case of reinforcement and damage under the same condition, the stiffness change showed a high matching rate.

Implementation of Real-time Heart Activity Monitoring System Using Heart Sound (심음을 이용한 실시간 심장 활동 상태 모니터링 시스템 구현)

  • Kim, Jin-Hwan;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.14-19
    • /
    • 2018
  • Recently, the smart health care industry has been rising rapidly and interest and efforts for public health have been greatly increased. As a result, the public does not visit medical specialists and medical facilities, but the desire to check their health condition in everyday life is increased. Therefore, many domestic and foreign companies continuously research and develop wearable devices that can measure body activity information anytime and anywhere And the market. Especially, it is used for heart activity measurement device using pulse wave sensor and electrocardiogram sensor. However, in this study, a monitoring system that can detect cardiac activity using cardiac sounds, heart sound measurement rather than pulse wave measurement and electrocardiogram measurement, was performed and its performance was evaluated. Experimental results confirmed the predictability of cardiac heart rate and heart valve disease during daily living.

Lost measurement sensor data estimation technology based on trend analysis of adjacent sensors using Boussinesq equation (부시네스크 식을 이용한 인접 센서 데이터 추세 분석 기반 손망실 계측 센서 데이터 추정 기법)

  • Choi, Sang-Il;Shim, Seungbo;Kong, Suk-Min;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.221-232
    • /
    • 2021
  • Most of measurement sensors used for maintenance are continuously exposed to various environmental factors such as transportation and rainfall, so the possibility of breakage increases gradually. The maintenance measurement sensor of domestic subway tunnel shows an average of 14.2% to 14.8% of loss rate after about 5 to 6 years from installation, and it shows a sensor loss rate of about 13.9% in case of foreign countries. As a result, it can be seen that an average of 15% of maintenance measurement sensors at home and abroad cannot send measuring values after 5~6 years. In order to continuously collect accurate data, measurement data must be recovered by performing repair or replacement of the sensor, but some lost measurement sensors are buried after installation. So, there are many difficulties in repairing sensors, including cost and time. Therefore, in this paper, we propose lost measurement sensor data estimation technology based on data trend analysis using adjacent sensors.

A study on the methods of identifying and verifying the causes of defects on rock bolt stressmeter and rod extensometer (터널계측용 록볼트축력계와 지중변위계의 불량원인 파악과 검증방법에 대한 연구)

  • Kim, Yeong-Bae;Noh, Won-Seok;Lee, Seong-Won;Jeon, Hunmin;Lee, Kang-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.411-429
    • /
    • 2022
  • Instrumentations are essential in NATM tunnels, however measuring instruments are installed and applied without performance verification procedures due to insufficient research on methods, procedures, regulations, etc. to verify the reliability of the measuring instruments. In this study, domestic and foreign regulations relating to the verification and calibration of instruments were investigated and necessities for accreditation standards were proposed. In order to identify the causes of the defects, an external inspection was performed on rock bolt stressmeter and rod extensometer, which are measuring instruments with relatively complex structures. For verifying the performance of these instruments, verification devices were developed that can load step-by-step and the causes of defects were identified in measuring instruments of nine domestic manufacturers. Through the performance test, a number of measuring instruments were found to be defective. It was important to test the performance of the instruments in the state of a finished product and accordingly performance inspection methods and procedures were proposed. The results of this study are expected to help preparing related regulations for verifying instrument performance and selecting instruments in the field.

The development of Evaluation Program for the Quantitatively Instrumentation Management of Geotechnical Structures (지반구조물의 정량적인 계측관리를 위한 평가프로그램 개발)

  • Kim, Yong-Soo;Yun, Hae-Bum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.71-77
    • /
    • 2012
  • In this study, data collected from geotechnical instrumentation, analyzers using Stochastic methods for evaluating the state of law and the automation program was developed. Is expected based data driven non-parametric methods modeling may be useful for evaluation of complex geotechnical instrumentation installed on the system from the measurements collected. Result of the verification of assessment techniques developed by the sensing data collected from the actual ground structures (reinforced retaining wall and tunnel), PCA analysis techniques applied to the present study was to determine the structural behavior and environmental factors.

Method of the Semi-Automation Camera Calibration for Noncontact Measure of Badly Illumination (불균등 조명에서 비접촉 계측을 위한 반자동 카메라 교정 방법)

  • Kim Jeong-Hyun;Lee Ju-Yong;Kim Dae-Gyung;Kim Min-Seong;Lee Se-Ho;Kang Dong-Joong
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.673-676
    • /
    • 2006
  • 본 논문은 산업현장의 불균등한 조명 조건에서 정확한 카메라 교정을 수행할 수 있는 방법을 제안한다. 비접촉 계측을 위한 카메라 교정법은 패턴에서 교정점들을 정확하게 추출할 수 있어야 하며, 평면 패턴을 사용하는 교정 방법은 최소 7개의 교정점을 알아야 한다. 그러나 비접촉 치수 계측기가 설치된 산업현장에서 카메라 교정에 알맞은 조명을 기대하기 힘들다. 본 논문에서는 최적조명제어가 어려운 산업현장에서 치수계측을 위한 카메라 교정을 효과적으로 수행할 수 있는 반자동 카메라 교정방법을 제안한다. 교정패턴상의 최소 4점을 사용자가 지정함에 의해, 조명제어의 어려움으로 인해 교정점 추출이 실패한 교정패턴의 불완전 교정점을 사용하여 이상적인 조명상태에서의 교정점 정보를 예측하고, 이 정보로부터 다시 정확한 교정인자들을 반복적으로 추출하는 방법을 적용한다. 제시된 방법은 렌즈의 투사왜곡에 의한 교정패턴에서도 성공적으로 적용될 수 있음을 실험을 통해 확인하였다.

  • PDF

A Study on the Magnetic Fields Measurement of Radio-Frequency Induction Coupled Plasma (고주파 유도 결합 플라즈마의 자기장 계측에 관한 연구)

  • 하장호;전용우;전재일;김기채;박원주;이광식;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.52-54
    • /
    • 1997
  • 고주파 유도결합 플라즈마(RFICP)에서 루우프법에 의해 자기장특성을 계측하였다. 자기장 계측은 플라즈마의 거시적 변화를 시간적으로 접근하며, 반도체 프로세스의 관건인 균일하고, 고집적인 분포를 얼마나 교란, 응집하는가를 검증하고, 밀도와의 관계를 비교, 분석하여 방적의 최적화를 규명할 수 있을 것이다. 작은 루우프 안테나($\Phi$:외경 7.5mm)는 RF 자기장의 크기와 방향을 결정하기 위해 방전속에 삽입된다. 자기장의 세기는 전형적으로 입력파워 50 - 500 [W]에 대해 0.1에서 2.5 G 사이로 변화하였다. 사용가스는 아르곤가스(99.9% 고순도)를 사용하였으며, 동작압력은 20 [mTorr] 에서 15 [sccm]까지하였다. 반경방향의 공간분포에서는 아스펙트비(aspect ratio : R/L)를 2로 하여 자기장 분포를 계측하였다. 자기장은 입력파워의존성에 대해서 200 [W]까지 상승하고, 300[W]에서 안정성을 지속한다. 압력에 대한 의존성은 300[W]에서 60 [mTorr]이상 일 때는 플라즈마의 균질한 압력상태를 벗어남을 보인다. 아르곤 가스유량에 대해서는 무거운 중성기체입자가 자기장의 영향을 거의 받지 않기 때문에 일정한 경향이 나타났다. 반경방향의 공간분포 측정에서는 자기장은 RFICP의 대구경 특성에 맞게 전체적으로 일정한 분포를 이루고 있음을 확인하였다. 이러한 결과로부터 고주파유도결합 플라즈마에서의 동작생성, 유지기구등의 파악에 도움이 될 것이다.

  • PDF

A PC-based instrumental system for fast measurement and analysis of power losses in DC-DC converter (DC-DC 컨버터의 고속 손실측정과 분석을 위한 PC 기반 계측시스템)

  • 안태영;주정규
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.569-575
    • /
    • 2003
  • This paper present a new fully-automated PC-based instrumental system that could quickly measure and analyze the efficiency of switching power supplies for the entire operating range. In the proposed system, we applied an Indirect method for high-voltage low-current measurements and a direct method for low-voltage high-current measurements, in order to obtain a high accuracy with minimum equipment requirement. Compared to the conventional methods, the newly proposed system offers more accurate and much faster real-time assessment of the efficiency with minimum measurement error. The performance and accuracy of the proposed system are verified using a 50 W switching power supply intended for telecommunication applications.