• Title/Summary/Keyword: 상용 CFD

Search Result 244, Processing Time 0.023 seconds

Issues and Solutions for the Numerical Analysis of High Mach Number Flow over a Blunt-Body (무딘 물체 주위 고마하수 유동해석의 문제점과 해결책)

  • 원수희;정인석;최정열;신재렬
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.18-28
    • /
    • 2006
  • Numerical analysis of high Mach number flow over a blunt-body poses many difficulties and various numerical schemes have been suggested to overcome the problems. However, the new schemes were used in the limited fields of applications because of the lack of field experience compared to more than 20 years old numerical schemes and the intricacies of modifying the existing code for the special application. In this study, some tips to overcome the numerical difficulties in solving the 3D high-Mach number flows by using Roe's scheme, the most widely used for the past 25 years and adopted in many commercial codes, were examined without a correction of the algorithm or a modification of the CFD code. The well-known carbuncle phenomena of Riemann solvers could be remedied even for an extremely high Mach number by applying the entropy fixing function and a unphysical solution could be overcome by applying a simply modified initial condition regardless of the entropy fixing and grid configuration.

Numerical Analysis of Unsteady Heat Transfer for the Location Selection of Anti-freeze for the Fire Protection Piping with Electrical Heat Trace (소방 배관 동파방지용 열선의 위치 선정을 위한 비정상 열전달 수치해석)

  • Choi, Myoung-Young;Lee, Dong-Wook;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • In this paper, the unsteady incompressible Navier-Stokes equations coupled with energy equation were solved to find out the optimal location of electrical heat trace for anti-freeze of water inside the pipe for fire protection. Since the conduction equation of pipe was coupled with the natural convection of water, the analysis of conjugate heat transfer was conducted. A commercial code (ANSYS-FLUENT) based on SIMPLE-type algorithm was used for investigating the unsteady flows and temperature distributions in water region. From the numerical experiments, the isotherms and the vector fields in water region were obtained. Furthermore, it was found that the lowest part of the pipe cross-section was an optimal position of electrical heat trace assuming the constant thermal expansion coefficient of water since the minimum temperature of the water with the position is higher than those with the other positions.

Numerical Analysis of Unsteady Heat Transfer for Location Selection of CPVC Piping (CPVC 배관 동파방지용 열선의 위치 선정을 위한 비정상 열전달 수치해석)

  • Choi, Myoung-Young;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.33-39
    • /
    • 2015
  • In this paper, a numerical experiment was conducted to find out the optimal location of electrical heat trace for anti-freeze of water inside the CPVC pipe for fire protection. The unsteady incompressible Navier-Stokes equations coupled with energy equation were solved. Since the conduction equation of pipe was coupled with the natural convection of water, the analysis of conjugate heat transfer was conducted. A commercial code (ANSYS-FLUENT) based on SIMPLE-type algorithm was used for investigating the unsteady flows and temperature distributions in water region. From the present numerical experiment, it has been found that the vector field of water inside the PVC pipe is opposite to the case of steel because of the huge difference of material properties of the two pipes. Furthermore, it was found that the lowest part of the pipe was an optimal position for electrical heat trace since the minimum water temperature of the case was higher than those of the other cases.

Design and Evaluation of Vaned Pipe Bends of Liquid Propellant for Satellite Launch Vehicles (소형위성 발사체용 액체 추진제 곡관 배관 설계 및 유동 성능 해석)

  • Lee Hee Joon;Han Sang Yeop;Ha Sung Up;Kim Young Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • The use of pipe-bends brings about non-uniform flows at the exit of them due to the velocity difference between inner and outer flows inside the bend. These phenomena may cause turbopump of satellite launch vehicle to run off-design and reduce its efficiency, and also introduce unstable influx of propellants to engine manifold after passing through a turbopump. In order to improve the uniformity of flow at the bend exit, certain turning vanes are set up in the bend pipe normally. Correspondingly the design is an $90^{\circ}\;and\;45^{\circ}$ bend pipes that incorporate with the maximum three turning vanes. All designs were analyzed with numerical analysis by solving the Navier-Stokes equations in three dimensions in case of each respective fuel and oxidizer. Evaluations of the vaned pipe bends designs were accomplished by the velocity magnitude distributions and the predicted pressure drops. We could find that the more vaned bend pipe and larger angle pipe under consideration effectively, the more uniform velocity magnitude of the bend and pressure losses.

A study for roll damping performance of a platform supply vessel with or without bilge keel using CFD (전산유체역학을 이용한 해양작업지원선의 빌지킬 유무에 따른 횡동요 성능에 관한 연구)

  • Seok, Jun;Kim, Sung-Yong;Yang, Young-Jun;Jin, Song-Han;Park, Jong-Chun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.791-798
    • /
    • 2016
  • In this study, numerical simulations on the effects of bilge keel on roll motion were conducted. The numerical simulations were performed on a 110 m class PSV using the commercial viscous flow analysis software Star-CCM+. Before conducting the study on the 110 m class PSV, an additional simulation of DTMB 5512 was performed and compared with the experimental results to validate the feasibility of the numerical simulation. In the simulation on PSV, a nondimensional damping coefficient was calculated using a free roll decay simulation, and the response amplitude operator (RAO) for the roll motion was calculated with a nondimensional damping coefficient at two conditions (with/without bilge keel).

Numerical Analysis of the Movement of an Initially Hemispherical Droplet on Hydrophilic/Hydrophobic Surfaces (친수성/소수성 표면상에서 초기 반구형 액적의 움직임에 관한 수치해석)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.405-414
    • /
    • 2015
  • Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources and numerically validated the results for a hypothetical 2D, initially having a hemicylindrical droplet. In this paper, the movement of an actual water droplet, initially having a 3D hemispherical shape, on horizontal hydrophilic/hydrophobic surfaces is simulated using a commercial computational fluid dynamics (CFD) package, Fluent, with VOF (volume of fluid) method. The results are compared with the 2D analysis of Myong (2014), and the transport mechanism for the actual water droplet is examined based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, surface free and pressure energies inside the droplet.

Numerical Analysis of Flowfield around Multicopter for the Analysis of Air Data Sensor Installation (대기자료센서 장착위치 분석을 위한 멀티콥터 주변 유동장 수치해석)

  • Park, Young Min;Lee, Chang Ho;Lee, Yung Gyo
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.20-27
    • /
    • 2017
  • The present paper describes the flow analysis of the flows around the multicopter for the selection of optimal position of air data sensor. For the flow analysis, the commercial fluid dynamics solver, STAR-CCM+ was used with polygon mesh and k-w SST turbulence modeling options. For the simulation of each rotating 4 propellers, unstructured overset mesh method was used. Hovering, forward flight, ascending and descending flight conditions are selected for the analysis and airspeed and flow angle errors were investigated using the CFD results. Through the flow field analysis, sensor location above one propeller diameter distance from the propeller rotating plane showed airspeed error less than 1m/s within the typical flight conditions of multicopter except descending.

Application of Open-source OpenFOAM for Simulating Combustion and Heating Performance in Horizontal CGL Furnace (수평형 CGL 소둔로의 연소 및 가열 성능 해석을 위한 오픈소스 OpenFOAM 기반 전산유체 해석)

  • Kim, GunHong;Oh, Kyung-Teak;Kang, Deok-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.553-561
    • /
    • 2017
  • The main motivation for this study was to establish a CFD-based procedure for the analysis of heating characteristics, particularly in industrial furnaces. As certain open-source software packages have gained popularity in dealing with complex industrial problems, the OpenFOAM framework was selected for further development of advanced physical models to meet industrial requirements. In this study, the newly developed comprehensive model was applied to simulate physical processes in the full-scale horizontal furnace of a continuous galvanizing line (CGL). The numerical results obtained indicate that the current approach predicts heating characteristics reasonably well. It was also found that radiative heat transfer plays a dominant role in heating the moving strip. To improve the predictability of our method, further work is required to model the turbulence-chemistry interaction realistically, as well as to impose a physically correct thermal wall boundary condition.

Flow Analysis for Optimal Design of Small Gear Pump (소형 기어펌프 최적화 설계를 위한 유동해석)

  • Lee, Suk-Young;Kim, Seung-Chul
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2015
  • Gear pump has a simple structure high reliability, easy operation and maintenance, widely used as a source of hydraulic system of hydraulic. In general, the gear pump was designed using variety of variables, the variables through the analysis of the mass flow rate and efficiency. In this paper, three-dimensional flow of the gear pump, in order to produce the optimal design of product, analysis was performed by using commercial software ANSYS v15.0 CFX. And then, combination of design parameters selected by ANSYS was carried out to confirm the simulation result. The efficiency and mass flow rate of the gear pump were studied by varying its rotational speed and the clearance between the gear tip and the housing. In the simulation results, as the rotational speed were increased, the average mass flow rate and efficiency increased. Furthermore, as the clearance between the gear tip and the housing was increased, the average mass flow rate and efficiency decreased.

Design Optimization of a Heat Sink for Mobile Telecommunication Module Satisfying Temperature Limits (온도 제한조건을 고려한 이동통신 모듈의 히트싱크 최적설계)

  • Jeong, Seung-Hyun;Jeong, Hyun-Su;Lee, Yong-Bin;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.183-190
    • /
    • 2011
  • As the number of mobile subscribers has increased recently, the demand for more number of base stations has increased. However, because of the shortage of sites for constructing base stations, a mobile communication module needs to be small in size. To minimize the size of the module, the size of the heat sink attached to the outside of the module should be minimized. Furthermore, the temperature of each electronic component of the module should be lower than the allowable temperature so that thermal stability can be maintained. A commercial PIDO (process integration and design optimization) tool PIAnO and a commercial CFD (computational fluid dynamics) tool FLOTHERM are used to minimize the size of the module while the constraints on the temperatures of the twelve electronic components are satisfied. As a result of design optimization, the volume of the heat sink is reduced by 41.9% while all the constraints on the temperature of the twelve electronic components of the module are satisfied.