• Title/Summary/Keyword: 상압 플라즈마

Search Result 96, Processing Time 0.024 seconds

The Study on Emission Spectrum Characteristics of Atmosphere Pressure Plasma (상압 플라즈마의 광 방출 스펙트럼 특성조사에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • In this study, we aimed to determine the optical properties of the plasma used for the dry cleaning method. The optical properties of the atmospheric pressure plasma device were measured through the degree of ionization of hydrogen or nitrogen gas by ionized atmospheric gas. The degree of ionization of hydrogen or nitrogen is closely associated with surface modification. We observed through our experiments that argon gas, an atmospheric gas, caused an increase in the ionization of nitrogen gas, which has similar ionization energy. This type of increase in nitrogen gas ions is believed to affect surface modification. The results of our study show that the pressure of argon gas and the partial pressure of argon and nitrogen gases lead to different results. This important result shows that argon ions can affect the ionization of nitrogen gas.

Power Supply for LCO Cleaning Plasma (LCD 세정용 상압 플라즈마 전원장치)

  • Cho, Hyung-Ki;Kim, Gyu-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.282-284
    • /
    • 2006
  • UV lamp systems have been used for cleaning of display pannels of TFT LCD or Plasma Display Pannel (PDP). However, the needs for high efficient cleaning and low cost made high voltage plasma cleaning techniques be developed and improved. In this paper, 3kW high voltage plasma power supply system was developed for LCD cleaning. The 3-phase input voltage is rectified and then inverter system is used to make a high frequency pulse train, which is rectified after passing through a high-power transformer. Finally, bi-directional high voltage pulse switching circuits are used to generate the high voltage plasma.

  • PDF

The effect of RF electric fields from an atmospheric micro-plasma needle device on the death of cells (침형 상압 마이크로 플라즈마 장치에서 발생하는 전기장이 세포 사멸에 미치는 효과)

  • Yoon, Hyun-Jin;Shon, Chae-Hwa;Kim, Gyoo-Cheon;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2249-2254
    • /
    • 2008
  • A non-thermal micron size plasma needle is applicable for medical treatment because it includes radicals, charged particles, ultraviolet emission, and strong electric fields. The electric fields around the plasma needle device driven by a radio frequency wave are investigated in order to calculate the power delivered to the cell. A commercial multi-physics code, CFD-ACE, was utilized for the calculation of electric fields for the optimization of the needle structure. The electric field and energy absorption profiles are presented with the variation of the device structure and the distance between the needle and tissues. The living tissues effectively absorb the radio frequency power from the plasma needle device with the covered pyrex structure.

A Study on Ashing Effects of Atmospheric Plasma for the Cleaning of Flat Panel Display (평판 디스플레이 세정을 위한 상압 플라즈마 에싱효과에 관한 연구)

  • Huh, Yong-Jeong;Lee, Gun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.35-38
    • /
    • 2008
  • This study shows the improvement of PR-Ashing rates in semi-conductor process using Atmospheric Plasma. Taguchi method is used to improve Ashing rates of photo-resist that is spread on the surface of a wafer. Improvement of Ashing rates is acquired through the decision of the effective factors and suitable combination of the factors. The results show the contribution rate of each factor and the effectiveness of Plasma for PR-Ashing process in this system.

  • PDF

Operational Properties and Microbial Inactivation Performance of Dielectric Barrier Discharge Plasma Treatment System (유전체장벽방전 플라즈마 장치의 조작특성과 살균력)

  • Mok, Chulkyoon;Lee, Taehoon
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2011
  • A dielectric barrier discharge plasma (DBDP) treatment system was fabricated and the optimum operating conditions for the plasma generation were determined in order to explore the potential of cold plasma as a non-thermal proessing technology. The microbial inactivation performance of the system was also evaluated against Staphyloocus aureus. The system consisted of power supply, transformer, electrode assembly and sample treatment plate. The input power was 220 V single phase AC and amplified to 10.0-50.0 kV on a transformer. A pulsed sine wave of frequency 10.0-50.0 kHz was introduced to the electrode embedded in ceramic as a dielectric barrier material in order to generate plasma at atmospheric pressure. Higher currents and consequently greater power were required for the plasma generation as the frequencies increased. A homogeneous and stable plasma was generated at currents of 1.0-2.0, and frequencies of 32.0-35.3 kHz. The optimum electrode-gaps for the plasma generation were 1.85 mm without loaded samples. More power was consumed as the electrode-gaps increased. The practically optimum electrode- gap was, however, 2.65 mm when samples were treated on slide-glasses for microbial inactivation. The maximum temperature increase after 10 min treatment was less than 20$^{\circ}C$, indicating no microbial inactivation effect by heat and thereby insuring a non-thermal method. The DBDP inactivation effect against Staphyloocus aureus increased linearly with treatment time up to 5 min, but plateaued afterward. More than 5 log reduction was achieved by 10 min treatment at 1.25 A.

Preparation of Vinyl Waste-derived Separator and Enhancement of Electrochemical Performance using Electrospinning and Plasma Treatment (전기방사와 산소 플라즈마 처리를 활용한 폐비닐 기반의 분리막 합성 및 전기화학적 성능 향상 연구)

  • Chan-Gyo Kim;Yoon-Ho Ra;Suk Jekal;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, vinyl waste, which is the cause of environmental pollution, is recycled via an electrospinning method and applied as a separator that can be employed for energy storage devices. In detail, vinyl wastes are dissolved in a solution containing p-xylene and cyclohexanone, followed by electrospinning to obtain a vinyl waste-derived separator(VWS), and then the hydrophilic functional groups on the surface of VWS are introduced using a plasma treatment to improve wettability. Scanning electron microscopy analysis have verified that the shape and thickness of as-spun VWS vary depending on the concentration of vinyl waste. The surface hydrophility of VWS is modified by plasma treatment with applied powers ranging from 80 to 120W. The lowest contact angle is observed when the 100W power is applied to VWS(VWS-100W). In electrochemical analysis, the VWS-100W-based supercapacitor device shows the highest specific capacitance of 57.9 F g-1. This is ascribed to the high porosity achieved by electrospinning as well as the introduction of hydrophilic functional groups by the oxygen plasma treatment. In conclusion, vinyl waste is successfully recycled into separators for energy storage devices, suggesting a new way to reduce environmental pollution.

Improvement in Adhesion Properties of Epoxy/Polyamide/MPD Reactive Blends by means of AP Plasma Treatment and Morphological Tuning (상압 플라즈마 표면처리와 형태학적 조절에 의한 에폭시/폴리아미드/MPD 반응성 블렌드의 접착력 향상)

  • Song, Hyun-Woo;Kang, Hak-Su;Kim, Won-Ho;Marzi, Stephan;Kim, Byung-Min;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.284-289
    • /
    • 2009
  • The morphology and mechanical properties of epoxy/polyamide/MPD reactive blends with various amount of polyamide were investigated. The cure behaviors, mechanical strengths, and morphological changes of the epoxy blend systems were analyzed by using DSC, UTM, and SEM, respectively. The amount of high soluble polyamide in epoxy ranged from 0 to 30 phr, and the cure reaction occurred at $170^{\circ}$ for 30 min. The start and maximum exothermic temperature in heat flows during cure reactions appeared at almost same temperature, indicating that soluble polyamide could rarely hinder the cure reactions. From the SEM images, it was found that the size of separated-phase was very fine about 100-300 nm, and at 20 phr of polyamide the boundary of separated-phase was unclear and the phase revealed co-continuous. By AP plasma treatment of specimen surface, the adhesion strength was increased by 20% due to enhanced surface free energy. By blending 20 phr of polyamide with epoxy, the adhesion strength was increased by 50% due to co-continuous phase in morphology. By considering the surface treatment of specimen and morphological tuning of the blends, it can be expected that the improvement in toughness and excellent adhesion strength can be achieved in structural adhesive systems.

Hydrophobic Coating on Fish Feed Using Dielectric Barrier Discharge Plasma Polymerization (유전체장벽방전 플라즈마 중합을 이용한 양어 사료의 소수성 코팅)

  • Lee, Sang Baek;Hung, Trinhquang;Jo, Jin Oh;Jung, Jun Bum;Im, Tae Heon;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • A plasma hydrophobic coating on commercial fish feed was conducted to prolong the floating time of feed, thereby enhancing the feed consumption rate and reducing the contamination of water in fish farms. The hydrophobic coating on the fish feed was prepared using an atmospheric-pressure dielectric barrier discharge (DBD) plasma with hexamethyldisiloxane (HMDSO), toluene and n-hexane as the precursors. The effect of the parameters such as input power, precursor type and coating time on the coating performance were examined. The physicochemical properties of the coating layer were analyzed using a Fourier transform infrared (FTIR) spectrometer and a contact angle (CA) analyzer. The water CA increased after the coating preparation, indicating that the surface changed from hydrophilic to hydrophobic. The FTIR characterization revealed that the hydrophobic layer was comprised of functional groups such as $CH_3$, Si-O-Si and Si-C. As a result of the hydrophobic coating, the floating time of the fish feed increased from several seconds to 3 minutes, which suggested that the plasma coating method could be a viable means for practical applications. Compared to the water CA measured as soon as the coating layer was prepared, the 6-day aged sample exhibited a substantial CA increase, confirming the aging effect on the improvement of the hydrophobicity.

HFCVD법을 이용한 대면적 BDD(Boron Doped Diamond) 전극 개발

  • An, Na-Yeong;Park, Cheol-Uk;Lee, Jeong-Hui;Lee, Yu-Gi;Choe, Yong-Seon;Lee, Yeong-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.168-168
    • /
    • 2016
  • BDD(Boron Doped Diamond) 전극은 전위창이 넓고, 다른 불용성 전극에 비해 산소발생과전압이 높아 물을 전기화학적인 방법으로 처리하는 영역에 있어 매우 효과적일 뿐만 아니라, 전통적인 불용성 전극에 비해 전극 표면에서 수산화 라디칼(-OH)과 오존(O3)의 발생량이 월등히 높아 수처리용 전극으로서의 유용성이 매우 높다. 따라서 BDD 전극을 수처리용 전극에 사용하는 경우 수산화 라디칼(-OH)과 오존(O3), 과산화수소(H2O2) 등과 같은 산화제의 생성은 물론이고, 염소(Cl2)가 포함되어 있는 전해액에서는 차아염소산(HOCl)이나 차아염소산이온(OCl-)과 같은 강력한 산화제가 발생되어 전기화학적 폐수처리, 전기화학적 정수처리, 선박평형수 처리 등의 분야에 널리 활용될 수 있다. 본 연구에서는 상온 및 상압에서 운전이 가능하고 난분해성 오염물질 제거 효과가 뛰어난 전기화학적 고도산화공정(Electrochemical Advanced Oxidation Process, EAOP)에 적합한 대면적의 BDD 전극을 개발하고 자 하였다. 이러한 BDD 전극의 성막 방법으로는 필라멘트 가열 CVD, 마이크로파 플라즈마 CVD, DC 플라즈마 CVD 등이 널리 알려져 있는데 최근에는 설비의 투자비가 비교적 저렴하고, 대면적의 기판처리가 용의한 필라멘트 가열 화학기상증착법(Hot Filament Chemical Vapor Deposition, HFCVD)이 상업적으로 각광을 받고 있다. 따라서 본 연구에서는 HFCVD 방법을 이용하여 반응 가스의 투입비율, BDD 박막의 두께, 기판의 재질 등에 따른 여러 가지 성막 조건들을 검토하여 $100{\times}100mm$ 이상의 대면적 BDD 전극을 개발하였다. Fig. 1은 본 연구를 통하여 얻어진 BDD 전극의 표면 및 단면 SEM이다.

  • PDF

The Effect of Atmospheric Plasma Parameters on Cleansing the Electronic-Industrial Parts (상압 플라즈마 매개변수들이 산업용 전자부품의 세척공정(cleansing)에 미치는 효과)

  • Ri, Eui-Jae
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.208-215
    • /
    • 2009
  • We employed atmospheric plasma to reactively remove the lubricant sprayed onto such industrial electronic parts as LCD chassis during sheet-metal forming processes and investigated basically the effect of plasma parameters on cleansing the surfaces of zinc-electroplated steel plates (EGI). Specimen prepared with some controlled amount of lubricant sprayed on their surfaces beforehand were subjected to two different kinds of atmospheric plasma, one being generated by using air and the other generated by using nitrogen (99.9% purity). Locating the plasma beams at the height range between 3.5 and 13.5 mm from the surface of each specimen and radiating for 5 to 30 seconds resulted out that the cases with a position of 3.5 mm and a duration of 5 seconds or longer showed the surfaces completely cleansed without a trace of lubricant. Furthermore we found out that the plasma generated by using simple air depicted higher cleansing ability than the other one generated by using expensive nitrogen, interestingly useful very much for industrial purposes. On another aspect, we confirmed that the drilled or cut surfaces of Zn-plated steel substrate would not be oxidized even under the influence of plasma during its cleansing process. Therefore, we could probably conclude from this fore-survey that a dry process adopting atmospheric plasma for cleansing industrial parts might be determined to become successful in terms of commercialization, cautiously.