• Title/Summary/Keyword: 상계요소해법

Search Result 7, Processing Time 0.022 seconds

A Study on the Process of Tube Spinning for the Titanium Alloy (티타늄 합금재의 튜브 스피닝 공정해석)

  • 홍대훈;황두순;이병섭;홍성인
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.55-63
    • /
    • 2000
  • Studies for tube spin forming have been implemented restrictively compared to spinning process, because of the complex of deformation mechanism. Especially there were not many studies by using FEM(Finite Element Method) for overcoming restriction of upper bound method. In this paper, the tube spinning process is analyzed to produce cylindrical body made by titanium alloy. In analysis, processing parameters was obtained by using upper bound method to consider material properties of titanium alloy and finite element analysis was implemented to investigate the flatness and the elongation of the titanium alloy workpiece by using ABAQUS code. The independent variables are ; material properties of workpiece, angles of roller, reduction of diameter. Three variables, two angles of roller and reduction of diameter are optimized by using the upper bound method. In this method, we can estimate the workable power, working force and reduction of diameter, and also the flatness and the elongation of workpiece by the finite elements analysis using ABAQUS/standard. The results indicates that these variables play a critical factors of spinning process for the titanium alloy and the optimum values of these variables.

  • PDF

UBET Analysis of Combined Forging of Non-Axisymmetric Shapes With Inclined Protrusion (경사진 돌출부가 있는 비축대칭 복합단조의 상계요소해석)

  • 윤정호;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 1990
  • The study is concerned with the analysis of combined forging of non-axisymmetric shapes with inclined protrusions by UBET technique. Work hardening is considered for the given range of strain rate during the forging process. A complex shape with inclined cavities is analyzed by subdividing the workpiece into finite UBET elements for which simple velocity fields are applicable. An experimental set-up was designed and manufactured for the experiment, and experiments are carried out with lead billets. The devised set-up can be used for closed-die forging of complex shapes with protrusions in which the dies can be separated automatically for easy removal of the forged products. Based on the derived kinematically admissible velocity fields for corresponding UBET elements, general computer programs have been developed. Since the energy dissipation rate for each elemental region is provided by subprograms (Subroutine or Function), the developed program can be applied to the forging problems of various shapes. The present study has shown that the method developed can be effectively applied to forging of non-axisymmetric shapes with complicated protrusions.

A Study on Arbitrary Cross Section Shaped Three-Dimensional Extruion with Upper Bound Method-Finite Element Method Couple (임의 단면 형상의 3차원 압출에 대한 상계해법-유한요소법 Couple에 관한 연구)

  • 이병섭;홍성인
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.145-155
    • /
    • 1996
  • The extrusion velocity of billet through a die and the shapes of the die are the important factors in the metal forming process of the extrusion of billet. in recent years, the life cycle of products is goingfaster. Although the former finite element method was capable of yielding a detailed analysis, it requires lots of time and extensive coding effort. Then, some simple devices were developed and based on upper bound method. For this purpose , a kinematically admiasible velocity field is formulated for extrusion of cylinders with arbitrary cross section and die profile on their outer surfaces by using a modified upper bound approach, which configures simulataneous extruding speeds in three directions . Also, In order to display mesh of the cold forward extrusion process using the approach , the automatic three-dimentional mesh generation produced by the approach coupled finite element method with upper bound method.

  • PDF

A Study on the Process of Tube End Spining by the Upper bound Method and Finite Element Method (상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구)

  • 김진형;홍성인;이영선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.23-30
    • /
    • 1996
  • The purpose of this study was to investigate changes in thewall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables were : Workpiece material, original wall thickness of tube, die angle, friction, and diameter reduction. The results indicated that of these five variables were a factor in wall-thickness increase and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses whcih are similar to acturla forming process. Optimized process variables which are obtained by upper bound method are used in ABAQUS pre-model . In ABAQUS analysis, the stress and the strain contours which are considered to be heat generation occured by the friction during forming process are observed.

  • PDF

A study on the process of tube end spinning by the upper bound method and the finite element method (상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구)

  • 김전형;홍성인;이정환;이영선
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.517-526
    • /
    • 1997
  • The purpose of this study is to investigate changes in the wall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables are ; workpiece material, original wall thickness of tube, die angle, friction, and reduction of diameter. The results indicate that these five variables are factors of the increase in wall-thickness and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses similar to actual forming process. Optimum process variables which are obtained by upper bound method are used in ABAQUS pre-model.

  • PDF

A Study on the Determination of Material Property by Cylinder Compression Test (원기둥 압축 시험을 통한 소재의 물성치 평가에 관한 연구)

  • Cha, Do-Sung;Choi, Hong-Seok;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1049-1061
    • /
    • 2006
  • In the study, the flow stress of material and friction condition were determined by using the cylinder compression test and numerical method. We proposed the flow stress equation including the initial yield strength to predict it from the upper bound method. The upper bound technique uses the velocity field which includes two unknowns to effectively express bulging. Also, inverse engineering technique uses the object function to minimize area enclosed by load-stroke curve. The friction factor is determined from the radius of curvature of the barrel by cylinder compression test. Flow stress and initial yield strength predicted from the above techniques are verified through the finite element simulation.

A Study on the Hybrid-ECAP Process to Produce Ultra-Fine Materials (초미세 결정립 조직을 만들기 위한 복합전단가공법에 관한 연구)

  • Lee, Ju-Hyun;Lee, Jin-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.83-91
    • /
    • 2008
  • The development of the equal channel angular pressing(ECAP) process in metals has recently provided a feasible solution to produce ultra-fine or nano-grained bulk materials with tailored material properties. However, ECAP process is difficult to scale up commercially due to requirements of an excessive load. In this paper, a new Hybrid-ECAP process with torsional die is considered to obtain materials of ultra-fine grain structure under low forming load. An upper bound analysis and numerical simulation (DEFORM 3D, a commercial FEM code) are carried out on the torsional die. By the upper bound analysis, analytical expression for the compression force and rotation speed are obtained. By the FEM analysis, the distribution of strain, stress and deformation are obtained. These results show that the Hybrid-ECAP is a useful process because this process can obtain the homogeneous deformations with relatively low forming load. Additionally, due to decreased forming load, die life can be improve.