• Title/Summary/Keyword: 삼차원치료계획

Search Result 20, Processing Time 0.02 seconds

Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer (조기유방암환자의 이차원치료계획과 삼차원치료계획의 방사선조사범위의 차이)

  • Jo, Sun-Mi;Chun, Mi-Son;Kim, Mi-Hwa;Oh, Young-Taek;Kang, Seung-Hee;Noh, O-Kyu
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.177-183
    • /
    • 2010
  • Purpose: Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Materials and Methods: Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inframammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. Results: The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. Conclusion: The use of 3D CT based planning reduced the radiation field in early breast cancer patients with small breasts in relation to conventional planning. Though a coherent definition of the breast is needed, CT-based planning generated the better plan in terms of reducing the irradiation volume of normal tissue. Moreover it was possible that 3D CT based planning showed better CTV coverage including postoperative change.

A Comparative Study of Radiation Therapy Planning between Volumetric-Modulated Arc Therapy and Three-Dimensional Conformal Radiotherapy in Nasopharyngeal Cancer (비인두암의 방사선치료 시 삼차원입체조형 치료기법과 용적세기조절회전치료기법의 비교연구)

  • Kim, Ji-Sung;Lee, Seok-Ho;Lee, Seung-Heon;Kim, Hye-Young;Choi, Jin-Ho;Lee, Kyu-Chan;Kim, Dong-Young
    • Korean Journal of Head & Neck Oncology
    • /
    • v.26 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • 연구목적 : 비인두암 환자들을 대상으로 방사선치료 시 삼차원입체조형치료기법과 용적세기조절회전치료기법을 비교하고 이하선을 포함한 정상조직 보호에 있어 그 차이점을 알아 보고자 본 연구를 시행하였다. 대상 및 방법 : 비인두암 환자 5명을 대상으로 치료계획용 CT(computed tomography)를 시행 후 삼차원입체조형방사선치료계획 과 용적세기조절회전치료계획을 시행하였다. 이를 바탕으로 얻은 선량분포, conformity index(CI) 그리고 선량체적 히스토그램을 통해 손상위험장기(organ at risk)와 계획용표적체적(planning target volume)을 비교 분석하였다. 결 과 : 분석결과 이하선에 조사되는 평균선량이 용적세기조절회전치료계획에서는 43.9%로 삼차원입체조형치료계획에서의 89.4% 보다 유의하게(p=0.043) 감소하였다. 계획용표적체적 conformity index의 경우 용적세기조절회전치료계획 (CI=1.06)에서 삼차원입체조형치료계획(CI=2.55) 보다 유의하게(p=0.043) 향상된 결과를 보였다. 결 론 : 비인두암 환자에서 용적세기조절회전 치료계획 시 삼차원입체조형치료계획 보다 유의하게 이하선에 평균선량이 줄었고 계획용 표적체적에 대한 conformity도 유의하게 향상되는 결과를 보였다. 본 연구가 적은 수의 환자를 대상으로 하였으나 용적세기조절회전치료기법을 시행 시 구강건조증의 발생을 줄일 수 있을 것으로 기대된다. 향후 더 많은 환자군을 대상으로 한 임상연구가 필요할 것으로 사료된다.

Comparison of Three- and Four-dimensional Robotic Radiotherapy Treatment Plans for Lung Cancers (폐암환자의 종양추적 정위방사선치료를 위한 삼차원 및 사차원 방사선치료계획의 비교)

  • Chai, Gyu-Young;Lim, Young-Kyung;Kang, Ki-Mun;Jeong, Bae-Gwon;Ha, In-Bong;Park, Kyung-Bum;Jung, Jin-Myung;Kim, Dong-Wook
    • Radiation Oncology Journal
    • /
    • v.28 no.4
    • /
    • pp.238-248
    • /
    • 2010
  • Purpose: To compare the dose distributions between three-dimensional (3D) and four-dimensional (4D) radiation treatment plans calculated by Ray-tracing or the Monte Carlo algorithm, and to highlight the difference of dose calculation between two algorithms for lung heterogeneity correction in lung cancers. Materials and Methods: Prospectively gated 4D CTs in seven patients were obtained with a Brilliance CT64-Channel scanner along with a respiratory bellows gating device. After 4D treatment planning with the Ray Tracing algorithm in Multiplan 3.5.1, a CyberKnife stereotactic radiotherapy planning system, 3D Ray Tracing, 3D and 4D Monte Carlo dose calculations were performed under the same beam conditions (same number, directions, monitor units of beams). The 3D plan was performed in a primary CT image setting corresponding to middle phase expiration (50%). Relative dose coverage, D95 of gross tumor volume and planning target volume, maximum doses of tumor, and the spinal cord were compared for each plan, taking into consideration the tumor location. Results: According to the Monte Carlo calculations, mean tumor volume coverage of the 4D plans was 4.4% higher than the 3D plans when tumors were located in the lower lobes of the lung, but were 4.6% lower when tumors were located in the upper lobes of the lung. Similarly, the D95 of 4D plans was 4.8% higher than 3D plans when tumors were located in the lower lobes of lung, but was 1.7% lower when tumors were located in the upper lobes of lung. This tendency was also observed at the maximum dose of the spinal cord. Lastly, a 30% reduction in the PTV volume coverage was observed for the Monte Carlo calculation compared with the Ray-tracing calculation. Conclusion: 3D and 4D robotic radiotherapy treatment plans for lung cancers were compared according to a dosimetric viewpoint for a tumor and the spinal cord. The difference of tumor dose distributions between 3D and 4D treatment plans was only significant when large tumor movement and deformation was suspected. Therefore, 4D treatment planning is only necessary for large tumor motion and deformation. However, a Monte Carlo calculation is always necessary, independent of tumor motion in the lung.

Algorithm for the design of a Virtual Compensator Using the Multileaf Collimator and 3D RTP System (다엽콜리메터와 삼차원 방사선치료계획장치를 이용한 가상 선량보상체 설계 알고리듬)

  • 송주영;이병용;최태진
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.185-191
    • /
    • 2001
  • The virtual compensator which are realized using a multileaf collimator(MLC) and three-dimensional radiation therapy Planning(3D RTP) system was designed. And the feasibility study of the virtual compensator was done to verify that it can do the function of the conventional compensator properly. As a model for the design of compensator, styrofoam phantom and mini water phantom were prepared to simulate the missing tissue area and the calculated dose distribution was produced through the 3D RTP system. The fluence maps which are basic materials for the design of virtual compensator were produced based on the dose distribution and the MLC leaf sequence file was made for the realization of the produced fluence map. Ma's algorithm were applied to design the MLC leaf sequence and all the design tools were programmed with IDL5.4. To verify the feasibility of the designed virtual compensator, the results of irradiation with or without a virtual compensator were analyzed by comparing the irradiated films inserted into the mini water phantom. The higher dose area produced due to the missing tissue was removed and intended regular dose distribution was achieved when the virtual compensator was applied.

  • PDF

Dose Distribution of Intensity Modulated Radiation Therapy in Prostate Cancer (전립선암에서 세기조절방사선치료의 선량분포 특성)

  • Kim, Sung-Kyu;Choi, Ji-Hoon;Yun, Sang-Mo
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.298-303
    • /
    • 2010
  • The aim of this study was to compare the dose distribution of intensity modulated radiation therapy (IMRT) with 3 dimensional conformal radiation therapy (3DCRT) in prostate cancer. The IMRT plan and the 3DCRT plan used the 9 fields technique, respectively. In IMRT, tumor dose was a total dose of 66 Gy at 2.0 Gy per day, 5 days a week for 5 weeks. All cases were following the dose volume histogram (DVH) constraints. The maximum and minimum tumor dose constraints were 6,700 cGy and 6,500 cGy, respectively. The rectum dose constraints were <35% over 50 Gy. The bladder dose constraints were <35% over 40 Gy. The femur head dose constraints were <15% over 20 Gy. Tumor dose in the 3DCRT were 66 Gy. In IMRT, the maximum dose of PTV was 104.4% and minimum dose was 89.5% for given dose. In 3DCRT, the maximum dose of PTV was 105.3% and minimum dose was 85.5% for given dose. The rectum dose was 34.0% over 50 Gy in IMRT compared with 63.3% in 3DCRT. The bladder dose was 30.1% over 40 Gy in IMRT compared with 30.6% in 3DCRT. The right femur head dose was 9.5% over 20 Gy in IMRT compared with 17.5% in 3DCRT. The left femur head dose was 10.6% over 20 Gy in IMRT compared with 18.3% in 3 DCRT. The dose of critical organs (rectum, bladder, and femur head) in IMRT showed to reduce than dose of 3DCRT. The rectum dose over 50 Gy in IMRT was reduced 29.3% than 3DCRT. The bladder dose over 40 Gy in IMRT was similar to 3DCRT. The femur head dose over 20 Gy in IMRT was reduced about 7~8% than 3DCRT.

The Effect of Therapy Oriented CT in Radiation Therapy Planning (치료 계획용 전산화 단층촬영이 방사선 치료계획에 미치는 효과)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.149-155
    • /
    • 1987
  • The success of radioation therapy depends on exact treatment of the tumor with significant high dose for maximizing local control and excluding the normal tissues for minimizing unwanted complications. To achieve these goals, correct estimation of target volume in three dimension, exact dose distribution in tumor and normal critical structures and correction of tissue inhomogeneity are required. The effect of therapy oriented CT (plannng CT) were compared with conventional simulation method in necessity of planning change, set dose, and proper distribution of tumor dose. Of 365 new patients examined, planning CT was performed in 104 patients $(28\%)$. Treatment planning was changed in $47\%$ of head and neck tumor, $79\%$ of intrathoracic tumor and $63\%$ of abdmonial tumor. in breast cancer and musculoskeletal tumors, planning CT was recommended for selection of adequate energy and calculation of exact dose to critical structures such as kidney or spinal cord. The average difference of tumor doses between CT planning and conventional simulation was $10\%$ in intrathoracic and intra-abdominal tumors but $20\%$ in head and neck tumors which suggested that tumor dose may be overestimated in conventional simulation Although some limitations and disadvantages including the cost and irradiation during CT are still criticizing, our study showed that CT Planning is very helpful in radiotherapy Planning.

  • PDF

Preliminary Results of 3-Dimensional Conformal Radiotherapy for Primary Unresectable Hepatocellular Carcinoma (절제 불가능한 원발성 간암의 입체조형 방사선치료의 초기 임상 결과)

  • Keum Ki Chang;Park Hee Chul;Seong Jinsil;Chang Sei Kyoung;Han Kwang Hyub;Chon Chae Yoon;Moon Young Myoung;Kim Gwi Eon;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.123-129
    • /
    • 2002
  • Purpose : The purpose of this study 띤as to determine the potential role of three-dimensional conformal radiotherapy (3D-CRT) in the treatment of primary unresectable hepatocellular carcinoma. The preliminary results on the efficacy and the toxicity of 3D-CRT are reported. Materials and Methods : Seventeen patients were enrolled in this study, which was conducted prospectively from January 1995 to June 1997. The exclusion criteria included the presence of extrahepatic metastasis, liver cirrhosis of Child-Pugh classification C, tumors occupying more than two thirds of the entire liver, and a performance status of more than 3 on the ECOG scale. Two patients were treated with radiotherapy only while the remaining 15 were treated with combined transcatheter arterial chemoembolization. Radiotherapy was given to the field including the tumor plus a 1.5 cm margin using a 3D-CRT technique. The radiation dose ranged from $36\~60\;Gy$ (median; 59.4 Gy). Tumor response was based on a radiological examination such as the CT scan, MR imaging, and hepatic artery angiography at $4\~8$ weeks following the completion of treatment. The acute and subacute toxicities were monitored. Results : An objective response was observed in 11 out of 17 patients, giving a response rate of $64.7\%$. The actuarial survival rate at 2 years was $21.2\%$ from the start of radiotherapy (median survival; 19 months). Six patients developed a distant metastasis consisting of a lung metastasis in 5 patients and bone metastasis in one. The complications related to 30-CRT were gastro-duodenitis $(\geq\;grade\;2)$ in 2 patients. There were no treatment related deaths and radiation induced hepatitis. Conclusion : The preliminary results show that 3D-CRT is a reliable and effective treatment modality for primary unresectable hepatocellular carcinoma compared to other conventional modalities. Further studies to evaluate the definitive role of the 3D-CRT technique in the treatment of primary unresectable hepatocellular carcinoma are needed.

Independent Verification Program for High-Dose-Rate Brachytherapy Treatment Plans (고선량률 근접치료계획의 정도보증 프로그램)

  • Han Youngyih;Chu Sung Sil;Huh Seung Jae;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.238-244
    • /
    • 2003
  • Purpose: The Planning of High-Dose-Rate (HDR) brachytherapy treatments are becoming individualized and more dependent on the treatment planning system. Therefore, computer software has been developed to perform independent point dose calculations with the integration of an isodose distribution curve display into the patient anatomy images. Meterials and Methods: As primary input data, the program takes patients'planning data including the source dwell positions, dwell times and the doses at reference points, computed by an HDR treatment planning system (TPS). Dosimetric calculations were peformed in a $10\times12\times10\;Cm^3$ grid space using the Interstitial Collaborative Working Group (ICWG) formalism and an anisotropy table for the HDR Iridium-192 source. The computed doses at the reference points were automatically compared with the relevant results of the TPS. The MR and simulation film images were then imported and the isodose distributions on the axial, sagittal and coronal planes intersecting the point selected by a user were superimposed on the imported images and then displayed. The accuracy of the software was tested in three benchmark plans peformed by Gamma-Med 12i TPS (MDS Nordion, Germany). Nine patients'plans generated by Plato (Nucletron Corporation, The Netherlands) were verified by the developed software. Results: The absolute doses computed by the developed software agreed with the commercial TPS results within an accuracy of $2.8\%$ in the benchmark plans. The isodose distribution plots showed excellent agreements with the exception of the tip legion of the source's longitudinal axis where a slight deviation was observed. In clinical plans, the secondary dose calculations had, on average, about a $3.4\%$ deviation from the TPS plans. Conclusion: The accurate validation of complicate treatment plans is possible with the developed software and the qualify of the HDR treatment plan can be improved with the isodose display integrated into the patient anatomy information.

Three-Dimensional Printing Technology in Orthopedic Surgery (정형외과 영역에서의 삼차원 프린팅의 응용)

  • Choi, Seung-Won;Park, Kyung-Soon;Yoon, Taek-Rim
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.103-116
    • /
    • 2021
  • The use of 3-dimensional (3D) printing is becoming more common, and its use is increasing in the orthopedic surgery. Currently, there are four major methods of using 3D printing technology in orthopedic surgery. First, surgical planning simulation using 3D printing model; second, patient-specific surgical instruments; third, production of customized prosthesis using 3D printing technique; fourth, patient-specific prosthesis produced by 3D printing. The areas of orthopedic surgery where 3D printing technology can be used are shoulder joint, spine, hip and pelvis, knee joints, ankle joint, and tumors. Since the diseases and characteristics handled by each area are different, the method of using 3D printing technology is also slightly different in each area. However, using 3D printing technology in all areas can increase the efficiency of surgery, shorten the surgery time, and reduce radiation exposure intraoperatively. 3D printing technology can be of great help in treating patients with particularly complex and difficult orthopedic diseases or fractures. Therefore, the orthopedic surgeon should make the most of the benefits of the 3D printing technology so that patient can be treated effectively.

Accuracy Evaluation of Three-Dimensional Multimodal Image Registration Using a Brain Phantom (뇌팬톰을 이용한 삼차원 다중영상정합의 정확성 평가)

  • 진호상;송주영;주라형;정수교;최보영;이형구;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.33-41
    • /
    • 2004
  • Accuracy of registration between images acquired from various medical image modalities is one of the critical issues in radiation treatment planing. In this study, a method of accuracy evaluation of image registration using a homemade brain phantom was investigated. Chamfer matching of CT-MR and CT-SPECT imaging was applied for the multimodal image registration. The accuracy of image correlation was evaluated by comparing the center points of the inserted targets of the phantom. The three dimensional root-mean-square translation deviations of the CT-MR and CT-SPECT registration were 2.1${\pm}$0.8 mm and 2.8${\pm}$1.4 mm, respectively. The rotational errors were < 2$^{\circ}$ for the three orthogonal axes. These errors were within a reasonable margin compared with the previous phantom studies. A visual inspection of the superimposed CT-MR and CT- SPECT images also showed good matching results.