• Title/Summary/Keyword: 삼각형상 그루브 채널

Search Result 5, Processing Time 0.02 seconds

PIV Measurement of Unsteady Flow in Wavy-Walled Channels (기복을 갖는 채널 내부 비정상흐름의 PIV계측)

  • Cho Dae-Hwan;Han Won-Hui;Choi Sang-Bom
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.159-163
    • /
    • 2005
  • This experimental study was performed to investigate internal flow and unsteady flow characteristics using a model for actual shape of a plate heat exchanger and visualization of flow through the particle image velocimetry. Seven Reynolds numbers were selected by calculation with the height of grooved channel and sectional mean velocity of inlet flow in the experiment, and instantaneous velocity distributions and flow characteristics were experimently investigated. The triangular grooved channel had a compound flow consisting of the flow in lower channel and the groove flow receiving shear stress by the channel flow in the experiment. The sheared mixing layer, in the boundary between the triangular groove and the channel, affected main flow to raise turbulent in the channel.

  • PDF

삼각형상 그루브 채널에서 맥동유동에 의한 열전달 향상에 관한 실험적 연구

  • 권오준;이대영;김서영;강병하;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.1009-1016
    • /
    • 2001
  • The heat transfer enhancement by pulsatile flow in a triangular grooved channel has been experimentally investigated in this study The experiment was performed in the ranges of the Reynolds number from 270 to 910, the pulsatile fraction from 0.125 to 0.75, and the Strouhal number from 0.084 to 0.665. It was measured that the heat transfer improves up to 350% compared with the steady flow case at Re=270,$\eta=0.5$, and St=0.335. The heat transfer enhancement was found to increase as the pulsatile fraction increases and the Reynolds number decreases. It was also found that the heat transfer enhancement is maximized at a specific pulsatile frequency satisfying the resonant condition. The nondimensional frequency, i.e., the Strouhal number at the resonant condition was found to increase as the Reynolds number decreases. The flow visualization revealed that the heat transfer enhancement results from the strong mixing caused by the repeating sequence of vortex formation, rotation and subsequent ejection from the grooves by the pulsatile flow.

  • PDF

A Study on Unsteady Flow Characteristics of Triangular Grooved Channel (삼각형상 그루브 채널의 비정상 유동특성에 관한 연구)

  • 조대환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.101-108
    • /
    • 2002
  • This experimental study was performed to investigate internal flow and unsteady flow characteristics using a model for actual shape of a Plate heat exchanger and visualization of flow through the particle image velocimetry. Seven Reynolds numbers were selected by calculation with the height of grooved channel and sectional mean velocity of inlet flow in the experiment, and instantaneous velocity distributions and flow characteristics were experimently investigated. The triangular grooved channel had a compound flow consisting of the flow in lower channel and the groove flow receiving shear stress by the channel flow in the experiment. The sheared mixing layer, in the boundary between the triangular groove and the channel. affected main flow to raise turbulent in the channel.

  • PDF

A NUMERICAL STUDY ON HEAT TRANSFER ENHANCEMENT BY PULSATILE FLOW IN A PLATE HEAT EXCHANGER (판형 열교환기의 맥동유동에 의한 열전달 향상에 관한 수치해석연구)

  • Lee, Myung-Sung;Hur, Nahm-Keon;Kang, Byung-Ha
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.93-96
    • /
    • 2006
  • The heat transfer enhancement by pulsatile flow in the plate heat exchanger has been investigated numerically in the present study. The numerical study was performed in the range of the mass flux from 0.04 to 0.12 kg/s. The results showed that the pulsatile flow produces resonating vortex shedding at the groove sharp edges and a strong transient vortex rotation within the grooved channels. As a result, the mixing between the trapped volume in the grooved cavity and the main stream was enhanced. Good agreements between the predictions and measured data are obtained in steady flow. And the heat transfer of pulsatile flow is about 2.4 times than steady flow when frequency is 10 Hz and the mass flux of cold side is 0.04 kg/s.

  • PDF

A Numerical Study on Heat Transfer Enhancement by Pulsatile Flow in a Plate Heat Exchanger (맥동유동에 의한 판형열교환기의 열전달 성능 향상에 관한 수치연구)

  • Chin Sang-Mun;Park Jong-Tack;Hur Nahmkeon;Kang Byung Ha
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.85-90
    • /
    • 2005
  • The heat transfer enhancement by pulsatile flow in plate heat exchanger has been investigated numerically in the present study. The numerical study was performed ill the range of the Strouhal number from 0.04 to 2 and the Reynolds number from 370 to 730. The results showed that the pulsatile flow produces resonating vortex shedding at the groove sharp edges and a strong transient vortex rotation within the grooved channels. As a result, the mixing between the trapped volume in the grooved cavity and the main stream was enhanced. Good agreements between the predictions and measured data are obtained for the optimum frequency of pulsation and corresponding heat transfer enhancement

  • PDF