• Title/Summary/Keyword: 살포시간

Search Result 230, Processing Time 0.031 seconds

Analysis of water quality improvement effect of agricultural freshwater lake using unmanned autonomous water treatment device (무인 자율 이동 수처리 장치를 이용한 농업용 담수호 수질개선 효과 분석)

  • Kang, Eu Tae;Jung, Woo Suk;Lee, Gyu Sang;Lee, Jang Hee;Park, Se Keun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.492-492
    • /
    • 2022
  • 최근 농업용 담수호 내에서 발생하는 녹조 및 수질오염으로 인한 민원이 증가하고 있다. 농업용수로 이용하고 있는 농업용 담수호의 수질관리는 상류유역에서 유입되는 오염원관리가 중요하나 장기적인 유역계획이 수립되어야하므로 즉각적인 수질개선효과를 기대하기 어렵다. 또한 호 내 수질관리는 광범위한 수면적으로 인해 인력 운영 및 시간적 소모가 크며, 일시적인 수질관리만 기대할 수 있다. 장치형 시설을 설치할 경우 막대한 시설비가 소요되며, 지속적으로 체계적인 유지관리가 필요하다. 따라서 담수호 내 수환경 특성을 고려하여 자율감시 및 수처리 장치를 이용한 지속가능한 수질관리가 필요한 실정이다. 본 연구에서는 담수호의 자율적인 수질관리를 위해 무인항법장비와 자동 수처리 장치를 융합한 제품을 제작하여 현장적용을 통해 수질개선 효과를 분석하였다. 무인 자율 이동장치에 설치된 자동 수처리 장치는 녹조발생에 대응하기 위해 환경부에서 고시한 수처리체(황산알루미늄, Alum)를 이용한 약품 살포 장치를 제작하였다. 자율항법장치의 운행 구역을 지정하고, 총 5회 지정된 구역내에서 약품을 살포하고, 미살포 구역을 대조군으로 하여 살포 구역과 수질개선효과를 비교하였다. 비교 결과 수질 항목별 자동 수처리 장치에 의한 수질 저감효율은 ○ COD 13.8%, TOC 18.6%, SS 23.3%, T-N 8.4%, T-P 58.9%, Chl-a 74.4%로 나타났다.

  • PDF

Residual Characteristics and Safety Assessments of Bifenthrin, Carbendazim and Metconazole in Angelica gigas Nakai (당귀 중 bifenthrin, carbendazim, metconazole의 잔류 특성 및 안전성 평가)

  • Jeong, Hye Rim;Noh, Hyun Ho;Lee, Jae Yun;Park, Hyo Kyoung;Jin, Me Jee;Kim, Jin Chan;Hong, Su Myeong;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.21 no.1
    • /
    • pp.97-105
    • /
    • 2017
  • This study was carried out to determine residual characteristics and to evaluate safety of bifenthrin, carbendazim and metconazole in minor crop, Angelica gigas Nakai. The test pesticides were sprayed onto the crop according to the combinations of spray days before harvest and frequency and then sampling was performed at the harvest day. Non-systemic pesticide bifenthrin was not detected in all samples, whereas systemic pesticides, carbendazim and metconazole, were detected from the crop in the range of from 0.14 to 0.49 and from 0.19 to 0.26, respectively. These results indicated that residual characteristics of the test pesticides in Angelica gigas Nakai were affected by their systemic properties. Also, residual concentration of carbendazim and metconazole in the crop was increased as more spraying frequency and spraying more closer to harvest day. And residual concentration of carbendazim in the crop on the last spraying day was 2.1 times higher than that of metconazole because nominal spraying dose of carbendazim was higher than that of metconazole by 1.9 times. The residue levels of the test pesticides in the crop were evaluated to be safe, considering their %ADIs were less than 0.9%.

Comparison of the Migration and Absorption of Calcium and Magnesium in Apple Leaves Sprayed with Plant Nutrients Prepared by Wet Nano-grinding Technology (습식 나노화 공정기술 적용 식물 영양제를 살포한 사과의 칼슘과 마그네슘 이동 및 흡수율 비교)

  • Park, Jae-Ryoung;Kim, Eun-Gyeong;Lee, Seung Hyun;Chung, Il Kyung;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.769-773
    • /
    • 2019
  • In this study, the migration route and the absorption rate of calcium and magnesium in apple leaves were compared and analyzed using plant nutrients prepared by wet nano-grinding technology. The plant nutrients were sprayed onto the leaves to confirm the component content and the movement route of the nanoized calcium and magnesium. At 2, 4, and 8 weeks after the plant nutrient treatment, the apple leaves were divided into petiole, lamina, and side, and SEM and EDS were used to measure the calcium and magnesium contents. The calcium and magnesium contents of the petiole increased from the 4th week after plant nutrient application to 1,115% at the 8th week. The calcium and magnesium contents of the lamina decreased after spraying but increased after 4 weeks. The calcium and magnesium contents increased in the side of the leaves compared to the control, reaching 673% after 4 weeks. The calcium and magnesium contents increased with increasing duration in all plots when compared with the control unsprayed leaves, suggesting that the usually poorly soluble calcium and magnesium were transferred from the petioles to the lamina. The results of this study indicate that improved calcium and magnesium absorption could be obtained in crops other than apples using plant nutrients produced through wet nano-processing technology. This technology is also expected to be applicable to natural products and bioindustries.

Effect of Mechanical Working System on Labor-Saving in Wheat Cultivation (밀 기계화 작업체계에 의한 노력 절감 효과)

  • Kim, Hag-Sin;Kim, Young-Jin;Kim, Kyeong-Hoon;Lee, Kwang-Won;Shin, Sang-Hyun;Cheong, Young-Keun;Park, Ki-Hoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.331-336
    • /
    • 2012
  • This study was carried out to evaluate the wheat cultivation system to reduce costs and mechanize wheat production. A field study was conducted for 2 years (2009 to 2010) at the National institute of crop science, Iksan, Korea. We used working system I and working system II for the experiment. Working system I is used a multiple machine attached with a spreader tractor (seeding, fertilization, seed coverage, and weed control functionality) and working system II is used a multiple machine with a tractor which works for simultaneous job when seeding step (seeding, fertilization, and seed coverage). Sowing to harvesting operation time is 118 hours/ha for mechanize with conventional planting. Working system I is a multiple machine and a combine machine with a tractor, which worked 26 hours/ha lower than conventional planting. Working system II is 18 hours/ha lower than conventional planting. The reduced work efforts of working system I and II were 78% and 85% respectively. The growth and yield of wheat according to working system I and II is lower than conventional planting. Therefore, a multiple machine needs to study for appropriate seeding rate. Mechanization cost in consideration of the mechanical break-even point when the working system I is 3.7 ha and working system II is 4.2 ha. The farm income is enhanced by working system I (778,110 won/ha) and working system II (849,930 won/ha). The results showed that application of a multiple machine lowered costs of wheat production.

Volatilization of Sprayed Pesticides in Greenhouse using a Lysimeter (라이시미터를 이용한 시설하우스 내에 살포한 농약의 휘산 양상)

  • Kim, Danbi;Kim, Taek-Kyum;Kwon, HyeYong;Hong, Su-Myeong;Park, Byung-Jun;Lim, Sung-Jin;Lee, Hyo-Sub;Moon, Byeong-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • In cultivation environment, various pesticides are used and some of them could be volatilized into the air. This could affect farmer's health and also cause environmental pollution. This study was carried out to investigate the volatilization of pesticides, and use the reference data for preventing farmer's pesticide intoxication and securing worker safety. The experiment was conducted in a greenhouse using a lysimeter which was of $1m^2$ area and 1.5 m depth filled with upland soil. The pesticides treated in lysimeter soil were ethoprophos (5.0% GR), diazinon (34.0% EC), alachlor (43.7% EC), metolachlor (40.0% EC), chlorpyrifos (2.0% GR), pendimethalin (31.7% EC), carbaryl (50.0% WP), napropamide (50% WP), tebuconazole (25.0% WP) and imidacloprid (2.0% GR). Each pesticide was treated at a concentration of 770.5 mg based on A.I (%). The recovery of pesticide ranged from 77.4 to 99.3%. The volatilized pesticides in air were collected by personal air sampler with PUF tube at 4 l/min flow rate. In addition, temperature and humidity were measured. The collected samples were extracted using acetone in a soxhlet apparatus for 8 hours. The extracted pesticides were resoluted with acetonitrile and diluted 5 times. It was analyzed with LC-MS/MS. For 720 hours experiment, the largest vaporization amount of each pesticide in air was ethoprophos $15.24{\mu}g/m^3$, diazinon $5.14{\mu}g/m^3$, pendimethalin $2.70{\mu}g/m^3$, chlorpyrifos $1.76{\mu}g/m^3$, alachlor $1.40{\mu}g/m^3$, metolachlor $1.12{\mu}g/m^3$, carbaryl $0.27{\mu}g/m^3$, napropamide $0.22{\mu}g/m^3$, tebuconazole $0.11{\mu}g/m^3$ and imidacloprid $0.05{\mu}g/m^3$. The R value (coefficient of correlation) between volatilization and vapor pressure of pesticides is higher than 0.99. Therefore, there is high correlation between volatilization and vapor pressure of pesticides.

The Experience of Pesticide Poisoning and It's Related Factors in a Rural Area (일부 농촌지역 주민의 농약중독 경험과 관련요인)

  • Lim, Kyung-Soon
    • Journal of agricultural medicine and community health
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • The purpose of this study is to analyse both actual conditions and health problems of farmers in using peshcrde and to develop protective methods. This study research was carried out by means of questionnaires with members of 100 families randomly selected from 279 families residing within the managing territory of primary health post. The results are as follows: Based on 10 kinds of safety instructions, it was shown that 76% complied with more than 6 isntractrons, and less than 4 instructions were 24%, of which 25% carefully read their handling instructions, 58% did sometimes, and 17% never read such instructions. Not complying with those safety instructions, the most frequent experience was physical symptoms, of which headache accounted for 80.9%, dizziness for 73.5%, dermatitis for 64.7%, and vomiting for 41.2%. Their experiences of pesticide poisoning indicated 68.0%, of which the aged level accounted for 88.9% which was relatively high. A spraying time of peshcide was less than 2 hours accounted for 64.0%, and more than 2 hours for 36%. It was also shown that the number of farmers, who experienced poisoning after spraying such chemicals, accounted for 77.8%. The hate of poisoning experiences were 92.0% in group not wearing a protective equipment, were 62.5% in group wearing a complete set of protective equipment.

  • PDF

Development of Digital Filter and Damper for Improving Accuracy of Measurement of Application Amount of Disinfectants of Disinfection Vehicle (방역차량의 약제 살포량 측정 정확성 개선을 위한 디지털 필터와 댐퍼 개발)

  • Baek, Seunghwan;Park, Donghyeok;Park, Hana;Lee, Chungu;Rhee, Joongyong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.148-148
    • /
    • 2017
  • 방역 차량의 약액탱크, 차량의 연료, 워셔액 등의 탱크 내부에는 잔존량을 측정하기 위해 기둥과 floating box로 이루어진 부력식 수위레벨센서가 사용되고 있으나 액체레벨에 따라 float이 상하로 움직이는 측정원리상 차량 주행 중 정확성이 매우 떨어진다(Park et al. 2016). 방역차량이 주행 중 분사할 때, 슬로싱 현상과 방역소독기의 노즐과 펌프에서 발생하는 진동으로 인해 기존의 부력식 센서를 이용한 약제 살포량 측정방법은 정확성이 매우 떨어지는 경향이 있다. 본 연구의 목적은 방역차량이 주행하면서 분사할 때, 수위레벨 센서를 이용한 약제살포량 측정의 정확성을 개선하는 것으로 디지털 칼만필터, Low pass filter와 댐퍼를 제작하여 이용했다. 본 연구에서는 압력식 레벨센서를 이용해 약액탱크의 높이당 단면적과 수위를 측정하여 약제살포량을 계산했다. Python 2.7을 이용해 디지털 칼만필터와 Low pass filter(LPF)를 구현하였으며 3D프린터를 이용해 댐퍼를 제작했다. 실내에서 슬로싱 현상을 인공적으로 만들어 필터와 댐퍼의 수위 측정 정확성 개선효과를 확인 후 실제 방역차량에 부착하여 비포장도로에서 주행하면서 분사할 때 필터와 댐퍼의 효과를 확인하였다. 댐퍼의 공극률(p)을 바꿔가며 수위 측정 정확성 개선효과를 확인하였다. 실내, 현장 실험 결과, 칼만필터가 LPF보다 개선효과가 더 크지만 데이터 50개 처리에 1.71초의 시간지연이 발생했다. 댐퍼는 수위센서를 고정시키고 유체의 운동을 방해하여 이상치와 큰 오차제거에 효과적이었다. 칼만필터와 댐퍼를 동시에 이용할 경우, 수위 측정정확성 $R^2$는 0.9985, 0.9981로 ${\pm}4.3cm$의 범위내에서 수위를 측정할 수 있었다. 필터의 시간지연과 수위 측정정확성을 고려하여 데이터 기록간격을 3초로 설정하면 ${\pm}3cm$이내에서 약탱크 내 수위를 측정할 수 있었다. 공극률(p)가 0.294, 0.291, 0.17에서 측정정확성 $R^2$는 각각 0.9897, 0.9858, 0.9872 로 p가 0.294에서 개선효과가 가장 좋았으나 개선효과의 차이는 크지 않았다.

  • PDF

Microbial Control of the Tobacco Cutworm, Spodoptera litura (Fab.), Using S. litura Naclear Polyhedrosis Virus. I. The Effect of Spray on Soybean Leaves, Temperature, Storage, and Sunlight on the Pathogenicity of the Virus (곤충 핵다각체병 바이러스를 이용한 담배거세미나방의 미생물적방제. I. 기주식물, 온도, 보관 미 태양광선이 바이러스의 병원성에 미치는 영향)

  • 임대준;진병래;최기문;강석권
    • Korean journal of applied entomology
    • /
    • v.29 no.3
    • /
    • pp.184-189
    • /
    • 1990
  • A nuclear polyhedrosis virus (NPV) of the tobacco cutworm, Spodoptera litura would be a promisible agent for the control of the insect. To develop a viral insecticide using S. litura NPV, effect of spray on soybean leaves, temperature, storage, an sunlight on the pathogenicity of the virus were studies as follows: Median lethal concentration ($LC_{50}$) of the virus sprayed on the leaves against the third and the fifth instar larvae were $1.301\times10^{4 PIBS}/ml$ and $1.087\times10^{5 PIBS}/ml$, respectively. On the concentration of $1.0\times10^{5 PIBS}/ml$, median lethal times ($LT_{50}$) were 7.3 days for the 3rd and 8.9 days for the 5th instar larvae. Stability of S. litura NPV was quickly decreased at the higher temperate than $60^{\circ}C$ and at the longer exposure to the higher temperature. Storage of the virus at $-20^{\circ}C$ was kept higher pathogenicity than $4^{\circ}C$ and $25^{\circ}C$. Viral activity was maintained more than 10 days in the sprayed-under leaves, but decreased at 3 day after spray in th sprayed-on the leaf surface when exposed the virus to sunlight.

  • PDF

Evaluation of Ammonia Emission Following Application Techniques of Pig Manure Compost in Upland Soil (밭 토양에서 돈분 퇴비 시용방법에 따른 암모니아 휘산량 평가)

  • Yun, Hong-Bae;Lee, Youn;Lee, Sang-Min;Kim, Suk-Chul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.15-19
    • /
    • 2009
  • Ammonia in atmosphere has a negative effect on the natural ecosystems, such as soil acidification and eutrophication, by wet and dry deposition. Livestock manure, compost, and fertilizer applications to arable land have been recognised as a major source of atmospheric ammonia emissions. The objective of this study was to evaluate the efficiency of compost application techniques in reducing ammonia loss in upland soil. The reductions in ammonia emission were 70 and 15% for immediate rotary after application (IRA) and rotary at 3 day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied with compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. The ammonia emission rate fell rapidly 6 h after application and 61 % of total ammonia emission occurred within the first 24 h following surface application. The lime application along with compost significantly enhanced the total ammonia emission. Total ammonia emission for 22 days were 40.1, 31.4, and 27.7 kg/ha for immediate incorporation in soil after lime and compost application, lime incorporation in soil following 3 days after compost surface application, and compost incorporation in soil following 3 days after lime surface application, respectively. Therefore, lime and livestock manure compost application at the same time was not recommended for abatement of ammonia emission in upland soil.

Distribution of Pesticide Applied with Different Formulations and Rice Growing Stages in Paddy Fields (벼 재배환경에서 생육단계에 따른 제형별 살포농약의 분포특성)

  • Park, Byung-Jun;Park, Sang-Won;Kim, Jin-Kyoung;Park, Kyung-Hun;Kim, Won-Il;Kwon, Oh-Kyung
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.74-81
    • /
    • 2008
  • To elucidate the exposure of pesticide in agricultural environment and to investigate distribution of pesticide in paddy fields. This experiment was carried out to clarify pesticide distribution in paddy fields applied with different formulations and growing stages. Initial dissipation rate of applied butachlor EW and oxadiazon EC before rice planting were more than 90% within 3 days in paddy fields. The distribution of a.i. in the pesticide formulations tested depended upon the elapsed time at each growing stage of rice plant after application. Most of pesticides applied within 15 days after transplanting of rice seedlings, more than 95%, were located in the surface water and soil regardless of pesticides; butachlor, thiobencarb and molinate GR. The distribution of iprobenfos GR, tricyclazole WP and phenthoate EC, after application 2 hours in middle growing stage (46 days after rice planting) were shown as 16.1, 48.9 and 38.9% in surface water, 83.6, 15.4 and 10.7% in soil, and 0.3, 35.7 and 50.4% in rice plants of paddy fields, respectively. Also tricyclazole WP and phenthoate EC, after application 2 hours in the late rice growing stage (90 days after rice planting) were distributed to 7.8 and 9.8% in surface water, and 21.7 and 5.1% in soil, and 70.5 and 85.1% in rice plants of paddy fields, respectively.