• Title/Summary/Keyword: 산화-공유결합 반응

Search Result 15, Processing Time 0.026 seconds

Oxidative-Coupling Reaction of Aromatic Compounds by Mn Oxide and Its Application for Contaminated Soil Remediation (망간산화물에 의한 방향족 유기화합물의 산화-공유결합반응 및 이를 이용한 오염토양 정화기법)

  • Kang, Ki-Hoon;Shin, Hyun-Sang;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.115-123
    • /
    • 2007
  • Immobilization of contaminants in subsurface environment is one of the major processes that determine their fate. Especially, immobilization by oxidative-coupling reactions, which is irreversible in the bio-chemical reactions and results in a significant reduction of toxicity, can be successfully applied for the remediation of contaminated soil and groundwater more effectively than conventional degradation. As a catalyst of this oxidative-coupling reaction, manganese oxide has many advantages in practical aspects as compared to microorganisms or oxidoreductive enzymes extracted from microorganisms, fungi, or plants. This paper is to present recent research achievements on the treatment mechanisms of various organic contaminants by manganese oxide. Especially, treatment methods of non-reactive organic compounds to Mn oxide are the main focus; i.e., application of reaction mediator, PAHs treatment method, combination with an appropriate pretreatment such as reduction using $Fe^0$, which suggests the potential of a wide range of engineering application. Concerning the natural carbon cycle processes, immobilization and stabilization by oxidative coupling reaction can be effectively applied as a environmentally-friend remediation method especially for aromatic contaminants which possess a high resistance to degradation.

Oxidative Transformation of 1-Naphthol Using Manganese Oxide (망간산화물을 이용한 1-Naphthol의 산화 제거 연구)

  • Lim, Dong-Min;Kang, Ki-Hoon;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, removals of 1-naphthol by oxidative-coupling reaction using birnessite, one of natural Mn oxides present in soil, was investigated in various experimental conditions(reaction time, Mn oxide loadings, pH, etc). Removal efficiency of 1-naphthol by birnessite was high in all the experimental conditions, and UV-vis. and mass spectrometric analyses on the supernatant after reaction confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Pseudo-first order rate constants, f, for the oxidative transformation of 1-naphthol by birnessite was derived from the kinetic experiments under various amount of birnessite loadings, and using the observed pseudo-first order rate constants with respect to birnessite loadings, surface area-normalized specific rate constant, $k_{surf}$ was also determined to be $9.31{\times}10^{-4}(L/m^2{\cdot}min)$ for 1-naphthol. In addition, the oxidative transformation of 1-naphthol was found to be dependent on solution pH, and the pseudo-first order rate constants were increased from 0.129 at pH 10 to 0.187 at pH 4.

Preparation Mechanism of Glycoprotein by Periodate-oxidized Soluble Starch and Maltooligosaccharides (과요오드산 산화당에 의한 인공단백질의 조제 메카니즘)

  • Ann, Yong-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.482-487
    • /
    • 1999
  • Periodate-oxidized soluble starch and maltohexaose reacted with ${\alpha}-NH_2$ group of free amino acids and ${\varepsilon}-NH_2$ group of peptidyl lysine. The result shows that periodate-oxidized soluble starch and maltooligosaccharides reacted with protein and formed Schiff base between CHO group of oxidized sugar and ${\varepsilon}-NH_2$ group of surface lysine of protein molecule. Carbon and hydrogen composition of sweet potato ${\beta}-amylase$ modified with oxidized soluble starch increased and it's nitrogen composition decreased. Carbohydrate contents of sweet potato ${\beta}-amylase$ modified with oxidized soluble starch were 13.2% (pentamer), 13.4% (monomer), and with oxidized maltohexaose were 9.7% (pentamer), 9.3% (monomer) by $phenol-H_2SO_4$ method. Alpha-amino group of N-terminal, and ${\varepsilon}-NH_2$ group of lysine, of sweet potato ${\beta}-amylase$ were reacted with oxidized soluble starch by dinitrophenylation were 70% (pentamer), 73% (monomer) and 33% (pentamer), 26% (monomer), respectively, in comparison with native enzyme.

  • PDF

Transformation of Endocrine Disrupting Chemicals (EDCs) by Manganese(IV) Oxide (망간산화물을 이용한 내분비계장애물질의 변환에 관한 연구)

  • Lee, Seung-Hwan;Choi, Yong-Ju;Chung, Jae-Shik;Nam, Taek-Woo;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • The occurrence of endocrine disrupting compounds (EDCs), chemicals that interfere with human hormone system, are increasing in the freshwater, waste water and subsurface as well. In this study, we determined the reactivity of three EDCs in the presence of birnessite. In aqueous phase, bisphenol A, 2,4-dichlorophenol and 17${\beta}$-estradiol, which possesses phenoxy-OH, were very rapidly transformed by birnessite: up to 99% of initial concentrations (50 mg/L for bisphenol A, 100mg/L for 2,4-dichlorophenol, and 1.5mg/L for 17${\beta}$-estradiol) were destroyed within 60 minutes. Especially, bisphenol A was the most reactive chemical, disappearing by 99% in a few minutes. The reaction occurred on the surface of birnessite, showing a linear increase of first-order kinetic constants with the increase of the surface area of birnessite. In soil slurry phase, the reactivity of birnessiteto EDCs was faster than in aqueous phase probably due to the cross coupling reaction of phenoxy radicals with soil organic matter. Considering the rapid transformation of the EDCs in the both phases, this oxidative cross coupling reaction mediated by birnessite would be an effective solution for the remediation of EDCs in environmental media, especially in soil.

Analysis of Curriculum and Textbooks of Chemistry I and Survey of Chemistry Education Major Teachers' Conceptions Related to Electron Movement Model and Oxidation Number Change Model (전자 이동 모델과 산화수 변화 모델에 대한 화학 I 교육과정과 교과서 분석 및 화학교육전공 교사들의 인식 조사)

  • Kim, Kihyang;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.204-210
    • /
    • 2017
  • In this study, we analyzed the descriptions of the electron movement model and the oxidation number change model presented in the 2009 revised curriculum and textbooks. We also investigated chemistry education major teachers' conceptions of limitations of each model. The electron movement model and oxidation number change model were presented in the curriculum and the textbooks. However, hybrid model was also presented which fail to grasp the limitation of each model. The hybrid model explains redox reactions of covalent bond compounds by electron movement model or even if it explains redox reactions by oxidation number change model, this explanations have the problem of confusing the virtual electron movement with the actual electron movement. A questionnaire and interviews were conducted to investigate chemistry education major teachers' perceptions of redox reactions. As results, many teachers did not recognize the limitations of each model and had difficulties to distinguish redox reactions from acid-base reactions because of the hybrid model.

효과적인 일함수 조절을 위한 그래핀-고분자의 적층 구조

  • Cha, Myeong-Jun;Kim, Yu-Seok;Jeong, Min-Uk;Song, U-Seok;Jeong, Dae-Seong;Lee, Su-Il;An, Gi-Seok;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.210-210
    • /
    • 2013
  • 그래핀은 뛰어난 기계적, 화학적, 광학적, 전기적 특성을 가지고 있는 2차원 물질로, 대면적 합성법과 전사 공정을 통해 다양한 기판에서의 사용이 가능해지면서 차세대 전자 소자로 활용하기위한 활발한 연구가 이루어지고 있다. 디스플레이, 태양전지의 전극과 전계 효과 트랜지스터의 채널로 적용한 연구에서 우수한 결과들을 보이고 있다. 특히, 금속/금속 산화물 전극은 염료 감응형 태양전지와 유기 발광 다이오드 구조에서 화학적으로 불안정할 뿐 아니라 일함수가 고정되어 쇼트키 접촉이 형성되면 저항을 낮추기 어렵지만, 그래핀은 금속/금속 산화물 전극보다 화학적으로 안정하고 일함수의 조절이 가능해 옴 접촉 형성에 용이하다. 그래핀의 일함수를 조절하는 연구는 크게 공유결합과 비공유 결합을 이용한 방법이 시도된다. 공유 결합을 이용한 방법은 합성과정에서 그래핀의 구조에 내재된 결함 혹은 새로운 결함을 형성하여 다른 원소를 첨가하는 방법이다. 이러한 방법은 그래핀의 결함 영역에서 작용하기 때문에 그래핀 전자 구조의 높은 수준 조절을 위해선 그래핀 구조의 파괴가 동반된다. 반면, 비공유 결합을 이용한 방법은 전하 이동 도핑 효과를 이용해 그래핀의 전자 구조를 제어하는 방법으로, 금속/금속산화물/기능기와 그래핀의 적층으로 복합 구조를 형성하는 방법이다. 금속/금속 산화물과의 복합구조는 안정적인 p-형 도핑이 보고되었지만, n-형 도핑은 대기중의 수분, 산소 그리고 기판과의 상호작용에 의해 대기중에서 불안정해 추가적인 피막공정이 요구된다. 기능기를 이용한 적층 구조는 그래핀과 기판사이의 상호작용 혹은 그래핀 전자 구조를 다양한 기능기를 이용해 제어하는 것으로, 이극성을 가진 자기정렬 단일층(self-assembled monolayers)이 대표적인 방법이다. 공간기(spacer)의 길이나 말단기(end group)의 종류로 p-형과 n-형의 도핑 수준을 제어할 수 있지만, 흡착기(chemisorbing groups)의 반응성이 기판의 화학적, 물리적 표면상태에 의존하기때문에 기판 선택이 제약되며 전처리 공정이 요구될 수 있는 한계가 있다. 본 연구에서는 다양한 기판에 적용가능한 용액 공정을 이용해 그래핀과 고분자를 적층하였고, 안정적이고 효과적으로 일함수를 낮추는 구조를 확인하였다.

  • PDF

Oxidative Coupling Reaction of Purified Aldrich Humic Acid by Horseradish Peroxidase (산화환원효소에 의한 휴믹산의 산화중합반응)

  • Jee, Sang-Hyun;Kim, Do-Gun;Kim, Jeong-Hyun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1054-1062
    • /
    • 2010
  • Oxidative coupling reactions of humic substances (HS) can be catalyzed by a variety of natural extracellular enzymes and metal oxides. In this study, property changes of HS induced by a natural enzyme, horseradish peroxidase (HRP), and the effect of it to microfiltration (MF) were investigated. PAHA was transformed by oxidative coupling reaction with HRP and hydrogen peroxide ($H_2O_2$), verifying the catalytic effects of the HRP. Size exclusion chromatography (SEC) revealed that weight-average molecular weight (MWw) of PAHA was proportionally increased with the dosages of HRP and $H_2O_2$, indicating the transform action of HS into larger and complex molecules. An increase in the conformational stability of HS was achieved through the promotion of intermolecular covalent bondings between heterogeneous humic molecules. Spectroscopic analysis (fluorescence and infrared spectroscopy) proved that functional groups were transformed by the reaction. Additionally, HS and transformed products were undergone microfiltration (MF) to examine the treatment potential of them in a water treatment facility. Original HS could not be removed by MF but larger molecules of transformed products could be removed. Meanwhile, transformed products caused more fouling on the filtration than original HS. This results proved that natural organic matter (NOM) can be removed by MF after its increase in molecular size by oxidative coupling reaction.

Self-Assembly Monolayers 처리 공정이 블록 공중합체를 이용한 나노패턴 제조에 미치는 영향

  • Hwang, Yeong-Hyeon;Gwon, Sun-Muk;Kim, Yeong-Hwan;Jo, Won-Ju;Kim, Yong-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.339-339
    • /
    • 2011
  • 기존의 광학리소그래피방법으로는 나노크기의 패턴을 형성하는데에 있어서 많은 제약이 있으며, 사실상 수십나노크기의 패턴을 형성하는데에는 전자빔리소그래피등 새로운 패턴형성 방법이 요구되고 있다. 블록 공중합체를 이용한 나노 패턴은 서로 다른 화학적 구조를 가지는 고분자들이 공유결합으로 연결되어 있는 분자구조를 이용하여, 하나의 분자 내에 서로 다른 블록들이 상분리를 일으키려는 것과 동시에 이들의 공유결합으로 인해 그 정도가 제한되는 것을 이용하여 라멜라, 실린더, 구 등의 주기적으로 배열된 형태의 구조물을 형성하는 패터닝 기술이다. 블록 공중합체를 이용한 나노크기의 패턴 형성은 열역학적으로 안정적인 구조이며, 대면적으로 구현 할 수 있어서 차세대 소자제작을 위한 제작기술로 많은 관심을 가지고 있다. 하지만 블록공중합체를 이용한 나노패턴 기술은 선행적으로 나노구조체를 결함이 없고, 원하는 형태로 제작 할 수 있는 공정의 확립이 필요하다. 따라서 본 연구에서는, 이러한 블록 공중합체을 이용한 나노패턴을 제조하는 공정에서, 폴리스틸렌과 실리콘 산화물 박막과의 표면반응을 막기 위한 Self-Assembly Monolayers (SAMs) 처리 공정이 패턴 형성에 미치는 영향을 알아보기 위하여 MPTS의 농도 및 처리시간을 변화시켰다. 나노패턴을 분석, 확인하기 위하여 Atomic Force Microscopic (AFM)과 Field Emission Scanning Electron Microscope (FESEM)을 이용하였다.

  • PDF

Thrombin Detection with Tetrabromophenolphthalein Ethyl Ester Adsorbed on Aptamer-attached Conductive Polymer (전기전도성 고분자 위에 고정된 압타머에 흡착된 테트라브롬페놀프탈레인 에틸 에스테르를 이용한 트롬빈 검출)

  • Chung, Saeromi;Noh, Hui-Bog;Shim, Yoon-Bo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.4
    • /
    • pp.134-140
    • /
    • 2016
  • An aptamer-based biosensor using a new redox indicator has been examined for the electrochemical detection of thrombin. The aptamer modified primary aliphatic amine was covalently immobilized onto poly-(5,2':5',2"-terthiophene-3'-carboxylic acid) (polyTTCA) layer. Tetrabromophenolphthalein ethyl ester (KTBPE) was interacted to aptamer and used as an electrochemical indicator. Prior to the detection, the oxidation reaction of KTBPE onto aptamer modified layer was also investigated using differential pulse voltammetry. The characterization of the final sensor (KTBPE/aptamer -polyTTCA) was performed by voltammetry, QCM, and ESCA. After binding of thrombin onto KTBPE/aptamer based sensor, the peak signal of KTBPE was gradually decreased. The sensor exhibited a dynamic range between 10.0 and 100.0 nM with the detection limit of $1.0{\pm}0.2nM$.

The Strength Characteristics of CO2-reducing Cement Mortar using Porous Feldspar and Graphene Oxide (다공성 장석 및 산화그래핀을 적용한 탄소저감형 시멘트 모르타르 강도특성)

  • Lee, Jong-Young;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • In response to the carbon emission reduction trends and the depletion of natural sand caused by the use of cement in construction works, graphene oxide and porous feldspar were applied as countermeasures in this study. By using (3-aminopropyl)trimethoxysilane-functionalized graphene oxide with enhanced bond characteristics, a concrete specimen was prepared with 5% less cement content than that in a standard mortar mix, and the compressive strengths of the specimens were examined. The compressive strengths of the specimen with (3-aminopropyl)trimethoxysilane-functionalized graphene oxide and porous feldspar and the specimen with standard mixing were 26MPa and 28MPa, respectively, showing only a small difference. In addition, both specimens met the compressive strength of cement mortar required for geotechnical structures. It is believed that a reasonable level of compressive strength was maintained in spite of the lower cement content because the high content of pozzolans, namely SiO2 and Al2O3, in the porous feldspar enhanced the reactions with Ca(OH)2 during hydration, the nano-sized graphene surface acted as a reactive surface for the hydration products to react actively, and the strong covalent bonding of the carboxyl functional group increased the bonding strength of the hydration products.