• Title/Summary/Keyword: 산화 환원 반응식

Search Result 77, Processing Time 0.022 seconds

Characteristics of Groundwater Quality in a Riverbank Filtration Area (강변여과수 부지 내 충적층 지하수의 수질특성과 변화)

  • Hyun Seung-Gyu;Woo Nam-C.;Shin Woo-Sik;Hamm Se-Yeong
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.151-162
    • /
    • 2006
  • Characteristics and changes of groundwater qualify were investigated in a riverbank filtration area at Daesan-myeon, Changwon City, Korea. The total dissolved solids (TDS) in groundwater samples collected in October were much less than that in March, indicating the mixing with recharged water from precipitation, as well as the changes of dissolved oxygen profiles at monitoring wells from March to October. Redox processes at depths appeared to trigger Fe and Mn contamination of groundwater in riverbank deposits. Amorphous oxyhydroxides md carbonate minerals such as $MnCO_3$ were probably the reactive phases for dissolved Fe and Mn, respectively. Groundwater contamination by nitrate-nitrogen $(NO_3-N)$ was controlled by the redox processes and subsequent denitrification at the sampled depths. Distribution of $NO_3-N$ concentrations at monitoring wells suggested that the nitrate contaminants were originated from agricultural facilities on the riverbank deposits. Some of monitoring wells, DS-2, D-2, DS-3, SJ-1, and SJ-3, were only partially penetrated into the sand/gravel aquifer, and subsequently, could not fully function to detect the water quality changes for the pumping wells. Proper measures, with regulating agricultural activities in the riverbank deposits, should be carried out to prevent groundwater contamination of the riverbank filtration area.

Phase Cooperation between Mo-V-O and SnO2 in Selective Oxidation of Acrolein -II. Supported Catalysts- (아크롤레인 선택 산화반응에서 Mo-V-O와 SnO2의 상간협동 - II. 담지촉매 -)

  • Park, Dae-Won;Na, Suk-Eun;Kim, Kyung-Hoon;Lee, Won-Ho;Chung, Jong Shik
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.295-304
    • /
    • 1994
  • $Mo-V-O/SnO_2$(VM/Sn) and $SnO_2/Mo-V-O$(Sn/VM) catalysts have been prepared and characterized by XRD, BET, SEM and TPD of ammonia. The catalytic reaction of acrolein oxidation with these catalysts, in a continuous-flow fixed-bed reactor, showed that they had higher conversion of acrolein and higher yield of acrylic acid than those of Mo-V-O itself. The origin of the observed synergy studied by TPD, TPR and TPO is explained by the cooperation of $SnO_2$ and Mo-V-O at their interfaces where electrons flow from Mo-V-O phase to $SnO_2$ and $SnO_2$ produces spill-over oxygens, which, by being transported onto the surface of Mo-V-O, reoxidize the partially reduced active sites.

  • PDF

Reductive stripping of Np using a n-butyraldehyde from a loaded TBP phase containing Np (Np 함유 TBP 유기상으로부터 NBA에 의한 Np의 환원 역추출)

  • Lee, Eil-Hee;Lim, Jae-Kwan;Chung, Dong-Yong;Yang, Han-Beom;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.163-170
    • /
    • 2008
  • The reductive stripping of Np using a n-butyraldehyde (NBA) from loaded organic solution containing Np, which was oxidative-extracted in a system of a 30 % TBP/NDD-2M $HNO_3$ and O/A=2 containing 0.005 M $K_2Cr_2O_7$ as an oxidant of Np, was studied. The stripping yields of Np was increased with an increasing the NBA concentration, with a decreasing the nitric acid concentration of stripping solution and with a decreasing the reaction temperature. The apparent reductive stripping rate equation was shown by the following equation : $-d[Np]_{Org.}/dt$ = 1,524 exp(-2,906/T) $[NBA]^{0.91}\;[H^+]^{-0.92}[Np]_{Org.}$. At 1.04 M NBA and 2 M $NHO_3$, the stripping yield of Np and U was 70.1 %, and 7.1 %, respectively, and the separation factor of U over Np ($=D_U/D_{Mp}$) was about 30.4. Therefore, it was found that U and Np co-extracted in a system of TBP-$HNO_3$ could be effectively mutual-separated by the NBA.

  • PDF

The Recovery of Silver from Thiourea Leaching Solution by Cementation Technique (침전법을 이용한 Thiourea 용출용액으로부터 Silver 회수)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.29-37
    • /
    • 2013
  • In order to apply the silver cementation method using Fe powder from pregnant thiourea leaching solution. Parameters such as the amount of Fe powder addition, agitation speed, and temperature were investigated. The silver cementation rate was increased by the increasing of Fe powder addition, agitation speed, and temperature. The highest silver cementation rate was found when the addition of Fe powder was 50 g/L at the agitation speed of 500 rpm. The silver cementation rate increase with increasing temperature according to the Arrhenius equation and obeys $1^{st}$ order kinetics. The activation energy from the kinetics data was found to be between 13.73 KJ/mol and 17.02 KJ/mol. In the XRD analysis, goethite was detected in the precipitate of the thiourea leach solution. This indicates that an oxidation-reduction reaction had occurred in the thiourea solution due to the addition of the Fe powder.

Diffusion Coefficient of Ag(I) ion in the Concentrated Nitric Acid Solution (고농도 질산용액에서 Ag(I) 이온의 확산계수 측정)

  • Park Sang Yoon;Choi Wang Kyu;Lee Kune Woo;Moon Jei Kwon;Oh Won Zin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.93-97
    • /
    • 1999
  • From the anodic peak currents of cyclic voltammograms for Ag(I)/Ag(II) couple obtained with the variation of nitric acid concentration, Ag(I) concentration and solution temperature at a Pt electrode in concentrated nitric acid solutions, the diffusion coefficients of Ag(I) ion were evaluated to estimate the limiting current density of Ag(II)-mediated electrochemical oxidation (MEO) process, which has been effectively used for the complete destruction of hazardous organic materials. The results showed that, due to the water decomposition reaction which occurred simultaneously with the Ag(I) ion oxidation, background subtractions for the cyclic voltammograms were required to estimate the correct peak currents. The empirical relationship for the diffusion coefficient of Ag(I) was suggested as a function of solution viscosity and temperature.

Characteristics of Strong Alkaline Electrolyzed Water Produced in All-in-one Electrolytic Cell (일체형 전해조에서 생산된 강알카리성 전해수의 특성)

  • Lee, Ho Il;Rhee, Young Woo;Kang, Kyung Seok
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.446-450
    • /
    • 2012
  • Strong alkaline electrolyzed water which is produced in cathode by electrolyzing the solution where electrolytes (NaCl, $K_2CO_3$ etc.) are added in diaphragm electrolytic cell, is eco-friendly and has cleaning effects. So, it is viewed as a substitution of chemical cleaner. In addition, strong alkaline electrolyzed water is being used by some Japanese automobile and precision parts manufacturing industries. When strong alkaline electrolyzed water is produced by using diaphragm electrolytic cell, it is necessarily produced at the anode side. Since strong acidic electrolyzed water produced is discarded when its utilization cannot be found, production efficiency of electrolyzed water is consequently decreased. Also, there is a weakness electrolytic efficiency is decreasing due to the pollution of diaphragm. In order to overcome this, non-diaphragm all-in-one electrolytic cell integrated with electrode reaction chamber and dilution chamber was applied. Strong alkaline electrolyzed water was produced for different composition of electrolytes, and their properties and characteristics were identified. In comparing the properties between strong alkaline electrolyzed water produced in diaphragm electrolytic cell and that produced in all-in-one electrolytic cell, the differences in ORP and chlorine concentration were found. In emulsification test to confirm surface-active capability, similar results were obtained and strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell was identified to be useable as a cleaner like strong alkaline electrolyzed water produced in diaphragm electrolytic cell. Strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell is thought to have sterilizing power because it has active chlorine which is different from strong alkaline electrolyzed water produced in diaphragm electrolytic cell.

A Study on the Development of Electrolysis System with Vertically Circulating Mercury Capillary Bundle Electrode and its Characteristics (수직형 순환식 수은 모세관 다발체 전극 전해계의 개발과 그 특성 연구)

  • Kim, Kwang-Wook;Lee, Eil-Hee;Shin, Young-Joon;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.228-236
    • /
    • 1996
  • An electrolysis system with a vertically circulating mercury capillary bundle electrode was developed with a very large electrode area in a minimum space. This system was operated by forcedly feeding mercury and aqueous solution containing metal ion into a fiber bundle packed densely within a small porous glass tube. In order to test the characteristics and stability of the electrolysis system, the reduction voltammograms of uranyl and ferric ions were measured with changes of the mercury flow rate and the aqueous flow rate. The aqueous flow rate had a large effect on the electrochemical reaction of metal ion occurring at the interface between the mercury and the aqueous solution and had to be regulated as an appropriate value to have a good limiting current shape. The limiting current was linearly proportional to the aqueous flow rate, and complete reductions of uranyl and ferric ions were rapidly and continuously accomplished at the potential showing limiting current. With a mercury flow rate high enough to keep a capillary continuum of mercury in the fiber bundle, the mercury flow rate had almost no effect on the electrochemical reaction. This system was confirmed to be effective and stable enough to control rapidly and continuously the oxidation state of metal ions fed into the system under an appropriate aqueous flow rate.

  • PDF

The Effect of addition of CuO to Fe2O3/ZrO2 Oxygen Carrier for Hydrogen Production by Chemical Looping (매체 순환식 수소제조공정에 적합한 Fe2O3/ZrO2 산소전달입자에 구리 산화물 첨가가 미치는 영향에 관한 연구)

  • Lee, Jun Kyu;Kim, Cho Gyun;Bae, Ki Kwang;Park, Chu Sik;Kang, Kyoung Soo;Jeong, Seong Uk;Kim, Young Ho;Joo, Jong Hoon;Cho, Won Chul
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.394-403
    • /
    • 2016
  • $H_2$ production by chemical looping is an efficient method to convert hydrocarbon fuel into hydrogen with the simultaneous capture of concentrated $CO_2$. This process involves the use of an iron based oxygen carrier that transfers pure oxygen from oxidizing gases to fuels by alternating reduction and oxidation (redox) reactions. The enhanced reactivities of copper oxide doped iron-based oxygen carrier were reported, however, the fundamental understandings on the interaction between $Fe_2O_3$ and CuO are still lacking. In this study, we studied the effect of dopant of CuO to $Fe_2O_3/ZrO_2$ particle on the morphological changes and the associated reactivity using various methods such as SEM/EDX, XRD, BET, TPR, XPS, and TGA. It was found that copper oxide acted as a chemical promoter that change chemical environment in the iron based oxygen carrier as well as a structural promoter which inhibit the agglomeration. The enhanced reduction reactivity was mainly ascribed to the increase in concentration of $Fe^{2+}$ on the surface, resulting in formation of charge imbalance and oxygen vacancies. The CuO doped $Fe_2O_3/ZrO_2$ particle also showed the improved reactivity in the steam oxidation compared to $Fe_2O_3/ZrO_2$ particle probably due to acting as a structural promoter inhibiting the agglomeration of iron species.

Studies on the Electrochemical Properties of $TiO_{2-x}$ Thin Films ($TiO_{2-x}$ 박막의 전기화학적 성질에 관한 연구)

  • Q Won Choi;Chu Hyun Choe;Ki Hyung Chjo;Yong Kook Choi
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.19-26
    • /
    • 1986
  • A titanium oxide thin films were prepared by air oxidation and vapour oxidation and a $TiO_2$ single crystal was reduced by heating in an argon atmosphere. All the electrode characteristics of the Ti$O_{2-x}$, thin films are not different from those of slightly reduced single crystal rutile. In cyclic voltammogram of oxygen containing electrolyte solution at Ti$O_{2-x}$ electrodes, cathodic peaks were observed at between -0.8V and -1.0V vs. SCE. The cathodic current near 0V vs. SCE in saturated solution with nitrogen was observed to be greater than in saturated solution with air. The chronoamperogram was represented by the equation of i = $i_0e^{-kt}$, when the rate constant k was represented by the equation of k =$k_0{[H^+]}^nexp(A{\eta}+E_a/RT)$ The values of activation energy $E_a $were found to be 4.6~4.8kcal/mole in overpotential range of 0.035∼0.145 V and 1.6kcal/mole in overpotential range of 0.2∼0.5V. The values of n and A were found to be 0. 1 and 5.4~5.6/V in range of 0.035~0.145V, and in range of 0.2~0.5V, to be 0.04 and 1.3/V, respectively. This can be interpreted as an totally irreversible reduction of oxygen.

  • PDF

The Development of U-recovery by Continuous Electrorefining (연속식 전해정련에 의한 우라늄 회수기술 개발)

  • Kim, Jeong-Guk;Park, Sung-Bin;Hwang, Sung-Chan;Kang, Young-Ho;Lee, Sung-Jai;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • The electrorefining process, one of main processes which are composed of pyroprocess to recover the useful elements from spent fuel, and the domestic development of electrorefiner have been reviewed. The electrorefiner is composed of an anode basket containing reduced spent fuel such as uranium, transuranic and rare earth elements, and a solid cathode, which are in LiCl-KCl eutectic electrolyte. Oxidation (dissolution) reaction occurs on the anode and a pure uranium is electrochemically reduced (deposited) on the solid cathode. By application of graphite cathode, which has a self-scrapping characteristics for the uranium deposits, and a recovery of the fallen deposits by a screw conveyer, a high-throughput continuous electrorefiner with a capacity of 20 kgU/day has been developed.