• Title/Summary/Keyword: 산화 칼슘

Search Result 174, Processing Time 0.031 seconds

Oxygen reduction and control of surface oxide on titanium by calcium reductant (칼슘과의 반응에 의한 타이타늄 분말 표면의 산화층 제어 및 산소 저감)

  • Im, Jae-Won;Im, No-Un;Hong, Cheon-Il;O, Jeong-Min
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.115-115
    • /
    • 2017
  • 티타늄에 있어서 주요 침입형 원소인 산소는 결함을 일으키는 원인으로 산소함량을 줄이는 연구가 활발히 진행되고 있다. 최근 가장 많이 이용되는 탈산 방법은 칼슘 및 칼슘염화물의 높은 산소 친화력을 이용하는 것이다. 칼슘염화물 플럭스를 사용하여 칼슘을 용해하고, 티타늄과 반응한 탈산생성물인 칼슘산화물을 플럭스 내에 용해시키는 방법이다. 이러한 방법으로 티타늄 와이어 및 시트 내 산소를 저감한 연구가 보고되었다. 티타늄 탈산의 제일 큰 구동력은 티타늄 내 산소원자의 확산이다. 티타늄의 탈산온도가 1,155K 이상으로 증가하면 hcp에서 bcc 구조로 변태되는데 이러한 구조에서 산소의 확산은 더 활발해진다. 실제로 티타늄의 변태온도 이전에서는 확산속도가 낮아서 큰 변화가 없지만, 1,273K 고온의 bcc 구조에서는 확산속도가 빨라서 그 이전에 비해 100배 이상 빠르게 원자 이동이 일어나는 것으로 알려져 있다. 하지만 이러한 탈산 방법은 티타늄 원재료가 벌크 형태에서 주로 연구되었으며 티타늄 분말에 대한 탈산 연구는 보고된 바가 많지 않다. 이는 높은 탈산온도에서 칼슘의 용해로 인한 분말의 건전한 회수가 어렵기 때문이다. 이러한 문제를 해결하기 위해 본 연구진은 칼슘 증기를 이용한 비접촉식 탈산 용기를 제작하여 티타늄 분말을 변태온도 이상에서 탈산하여 1,000ppm 이하 저산소 티타늄 분말을 회수하였다. 칼슘을 이용한 티타늄 내 산소의 제거 메커니즘을 깁스자유에너지와 각각의 분압에 의해 설명하고 있다. 가장 일반적인 설명은 티타늄 내 산소가 탈산온도에 따라 확산하게 되며 이러한 산소는 티타늄의 표면에서 티타늄 산화층을 형성한다. 이때 탈산제인 칼슘의 높은 산소 친화력으로 티타늄 산화층은 분해되어 칼슘산화물을 형성한다. 이러한 과정으로 티타늄 내 산소가 제거되는 것으로 알려져 있다. 하지만 많은 탈산 연구에도 불구하고 대부분의 연구 보고에서는 탈산 전후의 산소 농도 변화만 측정하였으며, 실제적으로 티타늄 탈산 전후의 표면산화층의 변화, 티타늄 내부의 산소농도 변화 및 격자 변형에 대한 연구는 보고된 바 없다. 따라서 본 연구는 1,000 ppm 이하 저산소 티타늄 분말 제조에 있어서 탈산 전후 표면 산화층 및 내부 산소 농도 등을 분석하여 탈산 거동에 대해 관찰하였다. 본 연구에서 비접촉식 탈산용기를 이용하여 칼슘 증기에 의한 탈산에 의하여 1,000 ppm 이하 저산소 티타늄 분말 제조하였고, 탈산된 분말을 티타늄 원재료와 비교하여 표면 산화층, 격자 변형, 내부 산소 농도 등을 분석하여 탈산에 따른 산소 거동을 살펴보았다. 탈산된 티타늄 분말의 표면 산화층은 원재료 대비 73% 제거되어 약 3nm로 줄었음을 확인하였고, 또한 표면 산화층 감소뿐만 아니라 티타늄 분말 내부에서도 원재료보다 산소 농도가 감소하였음을 확인하였다.

  • PDF

CHEMICAL INVESTIGATION ON THE REACTION BETWEEN CALCIUM HYDROXIDE INTRACANAL MEDICAMENT AND ZINC OXIDE-EUGENOL (수산화칼슘 근관약제와 산화아연-유지놀의 반응에 관한 화학적 분석)

  • Park, Sook-Hyung;Park, Joon-Chol;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.272-288
    • /
    • 2000
  • Calcium hydroxide is used as a root canal medicament with its several pharmacological effects. However, it has been known that the usage of calcium hydroxide in the root canal system before canal filling with gutta-percha and zinc oxide eugenol-based cement induced change in the properties of root canal cement which might adversely affect sealing ability of the canal filling. The purpose of this study was to identify the reactivity of calcium hydroxide-eugenol compound made from chemical interaction of between calcium hydroxide and zinc oxide eugenol. Chemical properties of calcium hydroxide, eugenol, zinc oxide eugenol, calcium hydroxide-eugenol and calcium hydroxide-zinc oxide eugenol compound were analyzed using XRD. FT-IR Spectrophotometer and FT-NMR Spectrometer. The results were as follows: 1. The compound made from interaction between calcium hydroxide and zinc oxide eugenol was as follows : 2. Calcium hydroxide was shown to make chemical bond (ionic bond) with eugenol. 3. Since bonding between $Ca^{2+}$ and eugenol is simple ionic nature, under water existence, calcium hydroxide-eugenol compound may be ionized easily and its physical property be deteriorated.

  • PDF

Sputtering Process for Calcium-Oxide based Thermoelectric Materials (칼슘산화물계 열전에너지변환소재의 스퍼터링 공정 연구)

  • Kim, Gyeong-Taek
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.277-277
    • /
    • 2015
  • 칼슘산화물계 열전에너지변환소재의 박막화를 위하여 타겟 제조공정 및 스퍼터링 공정에 대한 연구를 수행하였다. 방전플라즈마 소결(SPS) 공정을 이용하여 상대밀도 97%이상의 스퍼터링 타겟을 제조하였으며, 스퍼터링 공정을 통하여 at.% ${\pm}1.35$ 이하의 균일한 조성을 갖는 칼슘산화물계 열전에너지변환소재의 박막을 제조하였다.

  • PDF

A Study on the Mechanism of Calcium Binding Inhibition of Cardiac Sarcoplasmic Reticulum by Oxygen Free Radicals (산소대사물에 의한 심장근 Sarcoplasmic reticulum의 칼슘운반 억제 기전에 관한연구)

  • Kim, Hae-Won;Chung, Myung-Hee;Kim, Myung-Suk;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.79-89
    • /
    • 1985
  • Mechanism of calcium transport inhibition of cardiac sarcoplasmic reticulum (SR) by oxygen free radicals was examined. Effects of oxygen free radicals generated by xanthine/xanthine oxidase (X/XO) system on isolated porcine ventricle SR were studied with respect to its calcium binding, lipid peroxidation, SH-group content and alteration of membrane protein components. The results are as follows. 1) Calcium binding of isolated SR was markedly inhibited by X/XO. 2) During the incubation of sarcoplasmic reticulum with xanthine/xanthine oxidase, there were marked inclose in lipid peroxidation and reduction of SH-group content. 3) An antioxidant, p-phenylenediamine effectively prevented the lipid peroxidation but partially prevented the calcium binding inhibition of X/XO treated SR. 4) The reduction of SH-group content of SR treated with X/XO was partially prevented by p-phenylendiamine. 5) When modifying SH-group of SR by treatment with DTNB, the inhibition of calcium binding activity was partially prevented. 6) On gel-permeation chromatography of X/XO-treated sarcoplasmic reticulum, there was an increase of small molecular weight products, probably protein degradation products. 7) Semicarbazide, which prevents the cross-linking reaction of protein components, did not affect the calcium binding inhibition of X/XO-treated SR. From these results, it is suggested that the inhibition of calcium binding of SR by oxygen free radicals results from the consequence of multiple changes of SR components, which are lipid peroxidation, SH-group oxidation and degradation of protein components.

  • PDF

Study of Using Carbon Dioxide for Obtaining Potassium Chloride from Cement By-Pass Dust (시멘트 바이패스 더스트 내 염화칼륨 수득을 위한 이산화탄소 적용 연구)

  • Kim, Kyoungseok;Chu, Yongsik
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.38-44
    • /
    • 2017
  • As by-pass dust (BPD) made from cement manufactured process is designated waste, it is required to bury as high cost. The main component of BPD is potassium chloride (KCl), and used for the fertilizer. For using KCl to the fertilizer, the pH value of KCl is required as neutral or weak acid. However, it is not suitable to apply BPD into the fertilizer directly without any other treatment because BPD's pH value is shown 12.0~12.5; a high base. In this study, the carbon dioxide ($CO_2$) was used for removing calcium oxide (CaO) and reducing pH value during manufacturing process of KCl. We fixed inner condition of the carbon test chamber as $25^{\circ}C$-50RH%, and retained 0~7 hours under the 20 vol% of $CO_2$ atmosphere. After experiment, we analyzed the content of CaO and pH value from each samples. The more time exposed to $CO_2$, the content of CaO and pH value are shown. Furthermore, pH value exposed in 6 hours nearly reached 7.

Preparation of γ-oryzanol-loaded pectin micro and nanocapsules and their characteristics according to particle size (감마오리자놀 함유 칼슘-펙틴 미세 및 나노캡슐의 제조와 입자 크기에 따른 캡슐특성)

  • Lee, Seul;Kim, Eun Suh;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.110-116
    • /
    • 2017
  • ${\gamma}-Oryzanol-loaded$ calcium-pectin micro- and nanocapsules were prepared by ionic gelation to improve oxidation stability and the effect of particle size on capsule properties was investigated. The physical properties were influenced by preparation conditions such as concentrations of pectin, $CaCl_2$, ${\gamma}-oryzanol$, and hardening time. Particle sizes of micro- and nanocapsules that showed the maximum encapsulation efficiency and sustained release were $2.27{\pm}0.02mm$ and $347.7{\pm}58.1nm$, respectively. Microcapsules showed higher encapsulation efficiency ($50.73{\pm}1.98%$) than nanocapsules ($17.70{\pm}2.04%$), while nanocapsules showed more sustained release and higher stability than microcapsules. Release of ${\gamma}-oryzanol$ from both microand nanocapsules, which was low in gastric environments and promoted in intestinal environments, showed suitable characteristics for oral administration. Furthermore, antioxidant activity of ${\gamma}-oryzanol$ against autoxidation of linoleic acid was prolonged by both micro- and nanoencapsulation in a ferric thiocyanate test. Therefore, micro- and nanoencapsulation using pectin can be effective for improving biodelivery, stability, and antioxidant activity of ${\gamma}-oryzanol$.

Controlling Factors of Particle Size Distribution during Formation of Cubic and Colloidal Calcium Carbonate Compounds (Cubic형과 Colloid형 탄산칼슘 합성에서의 입경제어 연구)

  • Ahn, Ji-Whan;Park, Chan-Hoon
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.65-72
    • /
    • 1996
  • Colloidal calcium wrbonate(diametcr 0.02-0 09 m~wja s developed to maintain the mamenl of pnriide formatio~>w ~lhoutsurlace trealment. The control factors of particle size and optimum condiliuna for compound fam*tition has not bccn studiedyet. This shldy war aimed at developing a method fur compounding colloidal calcium carbonfcte to cnl~hol cubic calciumcarbonate, and then compounding the b-o types oI precipitated calcium wrbonatc under optimum wndilrans Calc~umhydroxide was calcinated at 1, lWC far two hours, md then hydrated for 30 minutes at t i i O rprn and ambiznt temperahlle.Two-liter suspension was subjected to the contact with carbon dioxide at l5"C, 600 ipxn and C0= injection in the rate of 1 Umin Two types of dcium carbonate(cuhic calcium carbonatc(0 24.9 pm) md collnidd calcium mhnnate (0.02-0 09 pm))were compounded by "wing the concentrations of calcium oxide and ihe suspension were compounded. It was found that theoptimum concentrations of each suspensions were 5 wt % and 2.5 \I*.% respectively. ' h c key control factor af thc parlicle slzcdislribution was the concenkation al the suspension. The size of compounded particles was measured by a Zcla S k r 'fieaverage particle size of the cubic calcium carbonate aas 223.4 nm(0.223 pm), and that of thc colloidal a~lciumc arbonate was93.6 nm (0.093 km). Ihe particle sizc was evenly cantlolled on a stdblc basis in an H, O reaction system.asis in an H, O reaction system.

  • PDF

Production of Vaterite Type Calcium Carbonate by using Oyster Shell Waste with Lysine (라이신 첨가에 의한 폐 굴껍질 이용 vaterite형 탄산칼슘 제조)

  • Bak, Young-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.118-126
    • /
    • 2021
  • The experiments to produce the vaterite type calcium carbonate were conducted for using the waste oyster shell as the recycling resources. Firstly, the oyster shell were calcinated at 800 ℃ for 24 h. Calcinated oyster shell were reacted with the nitric acid solution, and were diluted to 0.1 M Ca(NO3)2 solution. This solution was mixed with 0.1 M Na2CO3 contained 0.1 mol lysine/1 mol CaO at 20 ℃ and 600 rpm mixing condition for 1 h. The reaction products were identified to vaterite type calcium carbonate (84.5% vaterite, 15.5% calcite) by XRD and SEM analysis. Mean particle diameter was 6.87 ㎛, and the lysine content in calcium carbonate was analyzed to 0.1%.

Quality Characteristics and Antioxidant Activities of Green Tea Garlic Paste added Calcium (칼슘첨가 녹차마늘 페이스트의 품질 특성 및 항산화성)

  • Son, Chan-Wok;Jeon, Mi-Ra;Kim, Min-Hee;Kim, Mee-Ree
    • Korean journal of food and cookery science
    • /
    • v.24 no.6
    • /
    • pp.876-881
    • /
    • 2008
  • The aim of this study was to evaluate the quality characteristics and antioxidant activities of green tea garlic paste added calcium. Garlic was heated with green tea and charcoal at high temperature ($120^{\circ}C$) and high pressure ($1.5\;kgf/cm^2$) for 20 min, and then added several calcium sources (calcium carbonate, calcium citrate, calcium lactate, mixed calcium, calcium powder). Calcium carbonate, mixed calcium or calcium powder significantly increased pH of green tea garlic paste (p<0.05). All kinds of calcium sources significantly increased the viscosity of green tea garlic paste (p<0.05). Solid soluble content of green tea garlic paste was increased only in calcium citrate and calcium powder groups. Lightness, redness and yellowness of green tea garlic paste with calcium were increased, compared with control group (green tea garlic paste without calcium). The antioxidant activities by DPPH and hydroxyl radical scavenging activity of green tea garlic paste added calcium citrate, calcium lactate or calcium carbonate group were much higher than those of the other control groups. The garlic odor and garlic taste by sensory test were significantly weaker in calcium carbonate or calcium citrate group (p<0.05). Based on these results, it was suggested that calcium carbonate or calcium citrate is appropriate material for deodorizing and fortifying agent for green tea garlic paste.