• Title/Summary/Keyword: 산화 거동

Search Result 828, Processing Time 0.026 seconds

Characteristics of Three-Component Carbonate Electrolytes in Terms of Oxygen Reduction and NiO Dissolution (산소환원 및 산화니켈의 용해거동으로부터 본 삼원계 탄산염 전해질의 특성)

  • Lee, C.G.;Taniguchi, T.;Uchida, I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.178-182
    • /
    • 2003
  • The oxygen reduction and NiO dissolution behaviors in Li-Na-K three component carbonate melts have been investigated with various compositions through electrochemical and chemical ways. The oxygen reduction currents and NiO solubilities were measured at $650^{\circ}C$ and atmospheric condition in Li-Na-K =47.4-32.6-20, 60-20-20, 50-40-10, $40-40-20 mol\%$ carbonate melts. The oxygen reduction currents showed dependence on the composition, indicating oxygen solubility is a function of carbonate composition. At the composition of $ Li-Na-K=50-40-10 mol%$, a broader peak was observed, suggesting different oxygen reduction mechanism probably prevails in this composition. In contrast, insignificant differences of NiO solubility were obtained among the compositions.

혐기성퇴적물에서 비소거동에 미치는 미생물의 영향

  • 이종운;이상우;김경웅;윤정한
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.82-84
    • /
    • 2003
  • 산업화가 가속화되며 독성 중금속에 의한 토양, 지하수 및 하상퇴적물의 오염사례가 증가하고 있다. 지표 산화환경에서의 이들 중금속의 이동 및 거동에 관한 연구는 그간 수차례 수행된 바 있고 이에 관하여 적절한 오염처리기법 개발에 관한 연구도 다수 이루어지고 있다. 그러나 중금속이 심부 환원환경으로 이동한 경우에 대하여는 이들 오염물질의 거동 및 그에 따른 적절한 처리에 관한 연구가 거의 수행된 바 없는 실정이다. (중략)

  • PDF

Oxidation Behavior of STS Series at High -Temperature/Stagnation/Oxidizer-Rich Environment (고온/정체/산화제 과잉 환경에서 STS 계열의 산화 거동)

  • Shin, Donghae;Lee, Seongmin;Lee, Hijune;Ko, Youngsung;Kim, Seonjin;So, Younseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.843-848
    • /
    • 2017
  • Metal exposed to high temperature/high pressure/oxidizer-rich environment may cause rapid oxidation(ignition and combustion). In this study, a DC power supply test system that controls the temperature of specimen by supplying power to the specimen was constructed and after simulating the high temperature/stagnation/oxidizer-rich environment, the metal oxidation and ignition of STS series metal materials were evaluated. As a result, we was confirmed that the deformation (discoloration) of the selected material, the change in the surface roughness and the peeling of the metal surface were observed, and that the weight and the specimen thickness were changed. The most oxidized specimen was STS 304 and the less oxidized specimen was XM-19.

  • PDF

Redox Behavior of Chromium Oxide-Zirconia Catalyst (산화크롬-질코니아 촉매의 산화-환원거동)

  • Sohn, Jong-Rack;Ryu, Sam-Gon
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.663-669
    • /
    • 1992
  • Chromium oxide/zirconia catalysts were prepared by dry impregnation of $Zr(OH)_4$ powder with aqueous solution of $(NH_4)_2CrO_4$ followed by calcining in air. The redox behavior of prepared catalysts were investigated by reacting cumene as test material over catalysts. As a result it was found that $Cr^{6+}$ species(as chromate) on the surface of catalyst was responsible for the formation of strong acid site and the catalytic activity for the dealkylation of cumene. However, much of the $Cr^{6+}$ species was reduced to $Cr^{3+}$ species by $H_2$ formed during the catalytic reaction of cumene and the reduced $Cr^{3+}$ species was an active site for dehydrogenation of cumene to form ${\alpha}$-methyl styrene. The reduced $Cr^{3+}$ species was also reoxidized to a $Cr^{6+}$ species after treatment with $O_2$ and consequently the deoxidized catalyst exhibited catalytic activity for the dealkylation reaction of cumene.

  • PDF

Flexural Behavior of Reinforced Concrete Columns Using Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화슬래그 골재를 사용한 철근콘크리트 기둥의 휨 거동)

  • Jung, You-Jin;Lee, Young-Hyun;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.267-273
    • /
    • 2012
  • This study is performed to evaluate the flexural performance of reinforced concrete columns with electric arc furnace oxidizing slag aggregates. Electric arc furnace slag is a by-product obtained from the process of refining scrap steel. The electric arc furnace slag can be used as a concrete aggregate, because it mainly consists of CaO and $SiO_2$, similar to natural rocks and minerals. Three rectangular columns with various types of aggregate were cast to test in flexure. All of the test specimens had a cross-section of $250{\times}250$mm and a height of 1,500 mm in test region. The specimens were designed to apply reversed cyclic antisymmetric moment and constant axial force. The experimental results showed that the specimens with electronic arc furnace oxidizing slag aggregates had superior flexural performance than the specimen with natural aggregates.

Electrochemical Behaviors of Polycrystalline Silver Electrodes in 8M KOH Solutions Containing Bi2O3 (Bi2O3를 첨가한 8M KOH용액에서 다결정 Ag전극의 전기화학적 거동)

  • Hur, Tae-Uk;Kong, Yeong-Kyung;Chung, Won-Sub
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • The electrochemical behaviors of polycrystalline silver electrodes in 8M KOH solutions containing $Bi_2O_3$ were studied under various conditions by cyclic voltammetry, potentiostatic and galvanostatic techniques as well as the morphology of the silver oxide structures by SEM. It was found that three new compounds comprising silver, bismuth, and oxygen as well as $Bi_2O_3$, $Ag_2O$ and AgO were formed during the electrochemical oxidation of silver. In addition, the potentiostatic current transients were characterized by the appearances of the first current peaks corresponding to the formation of silver oxides, and the second current peaks corresponding to the Ag-Bi-O compounds, indicating the presence of the nucleation and 3D growth mechanism, in the potential regions of $Ag_2O$ and AgO, respectively. Microscopic examinations showed that two types of silver (I) oxide morphologies are formed in the potential region of $Ag_2O$.