DOI QR코드

DOI QR Code

Characteristics of Three-Component Carbonate Electrolytes in Terms of Oxygen Reduction and NiO Dissolution

산소환원 및 산화니켈의 용해거동으로부터 본 삼원계 탄산염 전해질의 특성

  • Lee, C.G. (Korea Electric Power Research Institute(KEPRI)) ;
  • Taniguchi, T. (Dept. of Applied Chemistry, Tohoku University) ;
  • Uchida, I. (Dept. of Applied Chemistry, Tohoku University)
  • 이충곤 (한국전력공사 전력연구원) ;
  • ;
  • Published : 2003.08.01

Abstract

The oxygen reduction and NiO dissolution behaviors in Li-Na-K three component carbonate melts have been investigated with various compositions through electrochemical and chemical ways. The oxygen reduction currents and NiO solubilities were measured at $650^{\circ}C$ and atmospheric condition in Li-Na-K =47.4-32.6-20, 60-20-20, 50-40-10, $40-40-20 mol\%$ carbonate melts. The oxygen reduction currents showed dependence on the composition, indicating oxygen solubility is a function of carbonate composition. At the composition of $ Li-Na-K=50-40-10 mol%$, a broader peak was observed, suggesting different oxygen reduction mechanism probably prevails in this composition. In contrast, insignificant differences of NiO solubility were obtained among the compositions.

용융탄산염형 연료전지의 특성을 결정짓는 탄산염 전해질에 있어, 기존의 Li-K와 Li-Na 탄산염과는 다른 Li-Na-K 삼원계 탄산염의 특성을 산소환원 및 산화니켈 용해거동을 통해 검토하였다. 대상 삼원계 전해질은 Li-Na-K=47.4-32.6-20, 60-20-20, 50-40-10, $40-40-20mo1\%$이었으며, $650^{\circ}C$, 1기압 조건에서 산소환원 거동은 전기화학적 방법을 통해, NiO용해거동은 화학적 방법을 통해 검토하였다 삼원계 조성에 따라 산소환원 전류치의 차이가 관찰되어, 산소용해도가 조성에 의존함을 나타내었다. 또한 $Li-Na-K = 50-40-10 mol\%$ 조성에서는 다른 형태의 산소환원 피크가 관찰되어 조성에 따라 산소환원 메카니즘의 차이가 존재할 수 있음을 시사하였다. 그러나 산화니켈 용해도는 조성에 크게 의존하지 않는 특성을 보여주었다.

Keywords

References

  1. Ph.D. Thesis, Technical University of Denmark B. K. Andersen
  2. Advances in Molten Salt Chemistry v.4 J. R. Selman;H. C. Maru;G. Mamantov(Ed.);J. Braunstein(Ed.)
  3. The 4th FCDIC Fuel Cell Symposium Proceedings S. Kuroe;S. Mitsushima;K. Yamaga;T. Kamo
  4. Proceeding of 6th Intl Symp on Molten Salt Chem. and Tech. M. Mohamedi;Q. Yu;K. Kihara;Y. Hisamitsu;T. Kudo;I. Itho;M. Umeda;J. R. Selman
  5. J. Am. Chem. Soc. v.75 T. Berzins;P. Delahay https://doi.org/10.1021/ja01099a013
  6. J. Electroanal. Chem. v.53 A. J. Appleby;S. B. Nicholson https://doi.org/10.1016/0022-0728(74)80007-0
  7. J. Electroanal. Chem. v.83 A. J. Appleby;S. B. Nicholson https://doi.org/10.1016/S0022-0728(77)80176-9
  8. J. Electroanal. Chem. v.112 A. J. Appleby;S. B. Nicholson https://doi.org/10.1016/S0022-0728(80)80008-8
  9. J. Electrochem. Soc. v.141 T. Nishina;I. Uchida;J. R. Selman https://doi.org/10.1149/1.2054895
  10. J. Electrochem. Soc. v.145 C.-G. Lee;H. Nakano;T. Nishina;I. Uchida;S. Kuroe https://doi.org/10.1149/1.1838512
  11. Electrochemical Methods Fundamentals and Applications A. J. Bard;L. R. Faulkner
  12. J. Electrochem. Soc. v.134 J. D. Doyon;T. Gilbert;G. Davis;L. Paetsch https://doi.org/10.1149/1.2100335
  13. 1998 Fuel Cell Seminar Abstracts M. Matsumura;T. Yagi;T. Shinoki