• Title/Summary/Keyword: 산화아연 나노선

Search Result 29, Processing Time 0.027 seconds

Multidimensional ZnO light-emitting diode structures grown by metalorganic chemical vapor deposition on p-Si (이종접합구조를 이용한 다층형복합구조의 산화아연 발광소자 제작)

  • Kim, Dong-Chan;Han, Wan-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Hyoung-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.59-59
    • /
    • 2007
  • 최근 GaN계 LED를 대체할 만한 물질로 주목받고 있는 ZnO는 단결정 박막성장의 어려움, 동일접합 LED 소자구현을 위한 p-ZnO 성장의 어려움 3원계 합금제작의 어려움 등으로 소자제작에 있어 고전을 하고 있다. 특히 이러한 문제점을 극복하고자 하는 방안으로 양자 제한 효과, 탁월한 결정성, self-assembly, internal stress 등의 새로운 기능성을 지닌 ZnO 나노구조가 제시되었다. 하지만 나노구조를 이용한 다이오드 제작에서도 금속전극의 접합이라는 문제의 벽에 가로막혀 있다. 본 실험에서는 자체 개발된 MOCVD 장비를 이용한 일차원 ZnO 나노선을 성장한 이후 연속적으로 박막을 성장하여 금속전극의 접합을 시도하였다. 이종접합구조 뿐만 아니라 일차원 및 이차원 구조의 복합구조는 일반 다결정 박막보다 결정성에서 우수한 특성을 보였으며, 다이오드 제작시에 높은 효율을 보였다.

  • PDF

CVD를 이용한 산화아연 (ZnO) 나노구조 형성 및 특성평가

  • Kim, Jae-Su;Jo, Byeong-Gu;Lee, Gwang-Jae;Park, Dong-U;Kim, Hyeon-Jun;Kim, Jin-Su;Kim, Yong-Hwan;Min, Gyeong-In;Jeong, Hyeon;Jeong, Mun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.179-179
    • /
    • 2010
  • 1차원 나노구조를 갖는 ZnO를 성장하기 위해 Laser ablation, Chemical vapor deposition (CVD), Chemical transport method, Molecular beam epitaxy, Sputtering 등의 다양한 형성법들이 이용되어지고 있다. 특히 대량생산과 경제성 측면에서 많은 장점을 가지고 있는 CVD를 이용한 ZnO 성장 및 응용 연구가 활발하게 수행되고 있다. 본 연구에서는 Thermal CVD를 이용하여 반응물질과 기판 사이의 거리, 기판온도, $O_2$/Zn 비율 등의 성장변수를 변화시켜 ZnO 나노구조를 성장하고 구조 및 광학적 특성을 연구하였다. Scanning electron microscope를 통한 구조 특성평가 결과 반응물질과 기판 사이의 거리가 13 cm 이하의 조건에서 ZnO 나노구조들은 나노판(Nanosheet)과 나노선(Nanowire)이 혼재하여 성장된 것을 보였다. 그리고 반응물질과 기판사이의 거리가 15 cm 이상부터 나노판이 없어지고 수직한 ZnO 나노막대(Nanorod)가 형성되었다. 상온 Photoluminescence 스펙트럼에서 반응물질과 기판사이의 거리가 5에서 15 cm로 증가할수록 결함 (Defect)에 의해 발생된 515 nm 파장의 최대세기 (Maximum intensity)가 10배 이상 감소한 반면, ZnO 나노구조에 의한 378 nm 파장의 NBE발광 (Near band edge emission)은 8배 이상 증가하였다. 이러한 구조 및 광학적 결과로부터, 질서 없이 성장된 것보다 수직 성장된 ZnO 나노구조의 결정질(Crystal quality)이 좋은 것을 확인하였다. 이를 바탕으로 성장변수에 따른 ZnO 나노구조의 형성 메커니즘을 Zn와 O 원자의 성장거동을 기반으로 한 모델을 이용하여 해석하였다.

  • PDF

Atomistic simulation of structural and elastic modulus of ZnO nanowires and nanotubes (산화아연 나노선과 나노튜브의 구조 및 탄성계수에 관한 원자단위 연구)

  • Moon, W.H.;Choi, C.H.;Hwang, H.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.429-429
    • /
    • 2008
  • The structural stability and the elastic modulus of hexagonal ZnO nanowires and nanotubes are investigated using atomistic simulations based on the shell model. The ZnO nanowire with (10-10) facets is energetically more stable than that with (11-20). Our calculations indicate that the structural change of ZnO nanowires with (10-10) facets is sensitive to the diameter. With decreasing the diameter of ZnO nanowires, the unit-cell length is increased while the bond-length is reduced due to the change of surface atoms. Unlike the conventional layered nanotubes, the energetic stability of single crystalline ZnO nanotubes is related to the wall thickness. The potential energy of ZnO nanotubes with fixed outer and inner diameters decreases with increasing wall thickness while the nanotubes with same wall thickness are independent of the outer and inner diameters. The transformation of single crystalline ZnO nanotubes with double layer from wurtzite phase to graphitic suggests the possibility of wall-typed ZnO nanotubes. The size-dependent Young's modulus for ZnO nanowires and nanotubes is also calculated. The diameter and the wall thickness play a significant role in the Young's modulus of single crystalline ZnO nanowires and nanotubes, respectively.

  • PDF

Synthesis and Characterization of Waterborne Polyurethane using Nano Zinc oxide (나노 산화아연을 사용한 수분산 폴리우레탄의 합성과 특성)

  • Cheon, Jung Mi;Jeong, Boo Yeong;Yoo, Chong Sun;Park, Duck Jei;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.9 no.4
    • /
    • pp.17-23
    • /
    • 2008
  • In this study, waterborne polyurethane (WPU)/nano ZnO was synthesized from various polyester polyols, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylolpropionic acid (DMPA), triethylamine (TEA) and ethylenediamine (EDA), nano ZnO. The contents of metal oxide were varied from 0 to 1.0 wt% of total solid. The effects of nano ZnO contents and ionic contents in the WPU/nano ZnO on thermal, mechanical properties were studied. The glass transition temperature ($T_g$) of WPU/nano ZnO do not show a distinct tendency with incorporation of nano ZnO and the $T_g$ of WPU/nano ZnO a little increased with increase of DMPA contents. The tensile strength and 100% modulus increase and elongation at break decreases with increase of nano ZnO contents and DMPA contents.

  • PDF

Development of Spray Coating Methods for Large Area Sol-Gel ZnO/Ag Nanowire Composite Transparent Conducting Substrates (대면적 졸-겔 산화아연/은 나노선 복합 투명 전도 기판 제조를 위한 스프레이 코팅법 개발)

  • Cho, Wonki;Baik, Seung Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 2018
  • Transparent conductive thin films (TCFs) are essential materials for solar cells, organic light-emitting diodes, and display panels. Indium tin oxide (ITO) is one of the most widely used commercial materials to create TCFs'; however, new materials that can possibly replace ITO at a lower cost and/or those possessing mechanical flexibility are urgently needed. Silver nanowire (AgNW) is one of those promising materials, as it is less expensive and possesses superior mechanical flexibility as compared to ITO. We used AgNW and sol-gel ZnO to fabricate composite thin films by spray coating. We propose two spray-coating methods: the 'metal-organic chemical vapor deposition (MOCVD)/AgNW' method and the Mixture method. These two methods are expected to be commercialized for high-quality and low-cost products, respectively.

Preparation of ZnO Thin Films with UV Emission by Spin Coating and Low-temperature Heat-treatment (스핀코팅 및 저온열처리에 의한 자외선 발광특성을 갖는 산화아연 박막의 제조)

  • Kang, Bo-An;Jeong, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.73-77
    • /
    • 2008
  • Purpose: This research is that prepare amorphous or crystalline ZnO thin films with pure strong UV emission on soda-lime-silica glass (SLSG) substrates by low-temperature annealing. Methods: Growth characteristic and optical properties of the amorphous or nano-crystalline ZnO thin films prepared on soda - lime - silica glass substrates by chemical solution deposition at 100, 150, 200, 250 and $300^{\circ}C$ were investigated using X-ray diffraction analysis, ultraviolet - visible - near infrared spectrophotometer, and photoluminescence. Results: The films exhibited an amorphous pattern even when finally annealed at $100^{\circ}C{\sim}200^{\circ}C$ for 60 min, while crystalline ZnO was obtained by prefiring at 250 and $300^{\circ}C$. The photoluminescence spectrum of amorphous ZnO films shows a strong NBE emission, while the visible emission is nearly quenched. Conclusions: These results indicate it should be possible to cheaply and easily fabricate ZnO-based optoelectronic devices at low temperature, below $200^{\circ}C$, in the future.

  • PDF

UV Light-assisted Photocatalytic Degradation of Simluated Methylene blue Dye by Multilayered ZnO Films (다층 ZnO 막에 의한 모의 메틸렌블루 염료의 자외선 광촉매분해)

  • Khan, Shenawar Ali;Zafar, Muhammad;Kim, Woo Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • As the use of chemical products increases in daily life, the removal of dye waste has also emerged as an important environmental issue. This dye waste can be decomposed using a photocatalyst, and the photocatalyst can be synthesized very cost-effectively by using the sol-gel technology. The sol-gel technology is not only very useful for nanoscale film formation, but also can simply form multilayer structures. Using a multiple spin coating method, in this study, a ZnO film with a multilayered structure (3 layers, 5 layers) was formed by using zinc oxide (ZnO), which is effective in decomposing various dyes. For performance comparison, a ZnO film having a single layer structure by a single spin coating method was prepared as a control. Structural and elemental analysis of ZnO film was performed using an X-ray diffraction analyzer and an energy dispersive X-ray spectrometer. A nanowire-like surface morphology could be observed through a scanning electron microscope. Additionally, UV-Vis spectrophotometer was used to measure the absorbance of UV light. The ZnO film with a five-layer structure degraded the simulated methylene blue by 49% more than the ZnO film with a single-layer structure. In conclusion, it was found that ZnO having a multilayered structure is useful as a photocatalyst that decomposes methylene blue dye more effectively.

Sensing Characteristics of ZnO-based Ethanol Gas Sensor on Ga-doped Nanowires by Hot Walled Pulsed Laser Deposition (온벽 펄스 레이저 증착법을 이용해 합성한 Ga 도핑된 산화아연계 나노선 에탄올 가스 센서의 특성)

  • Jung, Da-Woon;Kim, Kyoung-Won;Lee, Deuk-Hee;Debnath, Pulak Chandra;Kim, Sang-Sig;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.594-598
    • /
    • 2011
  • We have investigated the sensing properties of ethanol gas sensor with pure ZnO and Ga-doped ZnO nanowires on Au coated (0001) sapphire substrates grown by hot walled pulsed laser deposition. Randomly aligned ZnO nanowires arrays were grown on a Au-electrode patterned under ambient conditions. ZnO nanowires have various sizes and shapes with a different substrate position inside a furnace. The average of length and diameter of the ZnO nanowires were $8\;{\mu}m$ and 100 nm respectively, and confirmed by field emission scanning electron microscopy. Sensitivity chanege characterization of the gas sensor was found that measured sensitivities of the ethanol gas sensors were 83.3% and 68.3% at $300^{\circ}C$ respectively.

Hydrogen Gas Sensing Characteristics of ZnO Wire-like Thin Films (나노선 형상의 산화아연 박막의 수소 가스 감지 특성)

  • Nguyen, Le Hung;Ahn, Eun-Seong;Park, Seong-Yong;Jung, Hoon-Chul;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.427-431
    • /
    • 2009
  • ZnO wire-like thin films were synthesized through thermal oxidation of sputtered Zn metal films in dry air. Their nanostructure was confirmed by SEM, revealing a wire-like structure with a width of less than 100 nm and a length of several microns. The gas sensors using ZnO wire-like films were found to exhibit excellent $H_2$ gas sensing properties. In particular, the observed high sensitivity and fast response to $H_2$ gas at a comparatively low temperature of $200^{\circ}C$ would lead to a reduction in the optimal operating temperature of ZnO-based $H_2$ gas sensors. These features, together with the simple synthesis process, demonstrate that ZnO wire-like films are promising for fabrication of low-cost and high-performance $H_2$ gas sensors operable at low temperatures. The relationship between the sensor sensitivity and $H_2$ gas concentration suggests that the adsorbed oxygen species at the surface is $O^-$.