• Title/Summary/Keyword: 산업순환

Search Result 708, Processing Time 0.022 seconds

Evaluation of Bottom Ash on the Application for the Aggregate of Concrete (콘크리트용 골재로서의 Bottom Ash 활용성 평가)

  • Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.105-115
    • /
    • 2010
  • In this study, as one of solutions associated with the shortage of treatment area of industrial waste and the containment of its harmful components, the bottom ash which is known to be by-products of thermoelectric power plant was selected and its applicability for aggregate of concrete mixture was measured. Hardness test, sieve analysis, water-absorption test and SEM analysis were carried out to investigate the possibility of using bottom ash as a replacement of coarse and fine aggregate. Chemical analyses such as ignition loss test and X-ray incidence were carried out also. In addition, values for slump, strength, permeability, freeze and thaw, and carbonation were evaluated in terms of effects of replacement ratio of bottom ash. As the results, it was found that, though bottom ash is in short supply of fine particles and is in lack of cohesion, these problems can be solved by partially mixing with natural aggregates or improving in a process of production. In addition, bottom ash has not only advantage of durability but also acquirement of general compressive strengths in case that a certain proportion of natural aggregate is applied to mixture, in spite that unit water or chemical admixture should be increased to acquire good workability due to plenty of porosity.

  • PDF

Resistance to Corrosion of Reinforcing Steel and Critical Chloride Content of High Volume Fly Ash Concrete (하이볼륨 플라이애시 콘크리트의 철근부식 저항성 및 임계 염화물량)

  • Lee, Hyun-Jin;Bae, Su-Ho;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.375-381
    • /
    • 2017
  • Recently, due to the increasing of interest about the eco-friendly concrete, it is being increased to use concretes containing by-products of industry such as fly ash, ground granulated blast furnace slag, silica fume, and etc. Especially, these are well known for improving the resistance to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance to corrosion of reinforcement and critical chloride content of high volume fly ash concrete(HVFAC) which is replaced with fly ash for approximately 50% cement content. For this purpose, corrosion monitoring of reinforcement by half cell potential method was carried out for the cylindrical test specimens that the upper of reinforcement in concrete was exposed to detect the time of corrosion initiation for reinforcement. It was observed from the test result that the the time of corrosion initiation for reinforcement of HVFAC by the accelerated corrosion tests increased 1.2~1.3 times than plain concrete and the critical chloride contents of plain concrete and HVFAC were found to range $0.80{\sim}1.20kg/m^3$, $0.89{\sim}1.60kg/m^3$, respectively.

Analysis of Urban Heat Island Effect Using Time Series of Landsat Images and Annual Temperature Cycle Model (시계열 Landsat TM 영상과 연간 지표온도순환 모델을 이용한 열섬효과 분석)

  • Hong, Seung Hwan;Cho, Han Jin;Kim, Mi Kyeong;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.113-121
    • /
    • 2015
  • Remote sensing technology using a multi-spectral satellite imagery can be utilized for the analysis of urban heat island effect in large area. However, weather condition of Korea mostly has a lot of clouds and it makes periodical observation using time-series of satellite images difficult. For this reason, we proposed the analysis of urban heat island effect using time-series of Landsat TM images and ATC model. To analyze vegetation condition and urbanization, NDVI and NDBI were calculated from Landsat images. In addition, land surface temperature was calculated from thermal infrared images to estimate the parameters of ATC model. Furthermore, the parameters of ATC model were compared based on the land cover map created by Korean Ministry of Environment to analyze urban heat island effect relating to the pattern of land use and land cover. As a result of a correlation analysis between calculated spectral indices and parameters of ATC model, MAST had high correlation with NDVI and NDBI (-0.76 and 0.69, respectively) and YAST also had correlation with NDVI and NDBI (-0.53 and 0.42, respectively). By comparing the parameters of ATC model based on land cover map, urban area had higher MAST and YAST than agricultural land and grassland. In particular, residential areas, industrial areas, commercial areas and transportation facilities showed higher MAST than cultural facilities and public facilities. Moreover, residential areas, industrial areas and commercial areas had higher YAST than the other urban areas.

Properties of Non-cement Artificial Stone Utilizing the Waste Porcelain and Waste Glass (폐유리 및 폐자기를 활용한 무시멘트계 인조석재의 특성)

  • Kim, Tae-Hyun;Lee, Seung-Ho;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.136-142
    • /
    • 2016
  • As the rapid industrialization and modernization progress of the world it is becoming a fast-paced environment pollution. And, dust or environment pollution to solve reckless diggings of natural aggregate cause a serious problem. This study was used a Blast Furnace Slag and Combined Heat and Power Plant of Fly Ash as a cement substitute to reduce $CO_2$ emissions during cement production, this study intend to suggest it's result as basic data 'Properties of Artificial Stone interior or exterior materials type utilizing industrial by-product and waste resource' utilizing Waste Porcelain and Waste Glass. As a result, it was high strength that matrix added the Combined Heat and Power Plant of Fly Ash of addition ratio 40%. Also, pre-experiment was conduct as mixing ratio of waste glass, waste porcelain on the basis of the preceding experiment, proper mixing ratio was judged that proper of waste glass, waste porcelain was mixing ratio 60, 70 (%) of appeared surface aggregate ratio more than 45%.

Study on Semi-Dry Process Developement of BP's Sludge by Non-Heating Manufacture Method (비가열 제조법에 의한 BP슬러지의 반건조 제조공정 개발에 관한 연구)

  • Kim, Byeong-Ki;Kim, Jae-Hwan;Kang, Seok-Pyo;Kang, Hye-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.313-319
    • /
    • 2015
  • This study relates to an investigation into semi-dry manufacturing process of BP sludge based on non-heating production method. In this study, we conducted a research into reduction of water content ratio which arose from mixture of BP by-products of high water content ratio(50% or higher) with industrial by-products to use such BP by-products as construction materials in large quantity. We measured the reduction rate of water content ratio at the feeding ratio of water content reduction agent(1:0.5) in BP by-products. The results showed that water content ratio was the lowest with 18.5% in the mixture of PA+CFA(1:0.5). Moreover, water content ratio ranged between approximately 9.2% and 11.4% at the age of 1 day to 2 days at the aging temperature of $20-30^{\circ}C$, suggesting that the water content ratio was in the range within 10% which was a level suitable for use as construction material in this study. Meanwhile, we compared and evaluated the physical properties of non-heated BP by-products based on post-aging pulverization method. The results showed that there was no significant difference, depending on pulverization method. When production efficiency and economic feasibility were taken into consideration, it was found desirable to use fine particle pulverizer or pin mill enabling continuous production.

The Experimental Study on Mixing and Quality Properties of Quaternary Component Blended High Fluidity Concrete with CO2 Reduction (탄소저감형 4성분계 고유동 콘크리트의 배합 및 품질 특성에 관한 실험적연구)

  • Jo, Jun-Hee;Kim, Yong-Jic;Oh, Sung-Rok;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.268-276
    • /
    • 2015
  • In this study, $CO_2$ reduction type quaternary component high fluidity concrete was produced with more than 80% reduction in cement quantity to increase the use of industrial byproducts and enhance construction performance, thereby reducing $CO_2$ emissions. Furthermore, the quality properties, and $CO_2$ reduction performance of this concrete were evaluated. As a result of the quality evaluation of quaternary component blended high fluidity concrete with $CO_2$ reduction, the target performance could be achieved with a 80% or more reduction of cement quantity by mixing a large amount of industrial byproducts. The required performance level was obtained even though the flow, dynamic, and durability characteristics decreased a little compared to conventional mix. In addition, to analyze the $CO_2$ reduction performance of quaternary component blended high fluidity concrete with $CO_2$ reduction, the life cycle assessment (LCA) of the concrete was performed and the results showed that compared to the conventional mix, the carbon emissions decreased by 62.2% and the manufacturing cost by 24.5%.

Study on Burnability and Reactivity of High Al2O3 Content OPC Clinker for the Use of Industrial Waste (산업부산물 활용을 위한 고Al2O3 함량 OPC 클링커의 소성성 및 반응성에 관한 연구)

  • Kang, Bong-Hee;Choi, Jaewon;Ki, Tae-Kyoung;Kwon, Sang-Jin;Kim, Gyu-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.294-301
    • /
    • 2020
  • This study evaluated the burnability and hydration reaction of clinker burned with high Al2O3 content OPC to apply large amounts of industrial by-products in the cement manufacturing process. Specifically, after preparing a clinker with a high C3A content by burning the OPC raw material with a high content of Al2O3 in a laboratory electric furnace, the burnability of the clinker was evaluated through XRD Rietveld analysis and polarization microscopy, and clinker hydration reactivity was reviewed through the Isothermal conduction calorimetry analysis and the cement compressive strength. As a result, the kiln burning temperature for the production of high Al2O3 content clinker lower, and the compressive strength was equal to or higher than OPC. Therefore it was confirmed the possibility to manufacturing energy-saving high Al2O3 content clinker using a large amount of industrial by-products.

A Sustainable and Viable Method to Recycle Oyster Shell Waste as an Alternative of Limestone in Limestone Calcined Clay Cement (LC3) (석회석 소성 점토 시멘트(LC3) 내 석회석 대체재로서 굴 패각의 친환경적인 재활용 방안)

  • Her, Sung-Wun;Suh, Heong-Won;Park, Jae-Yeon;Im, Su-Min;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • Over the last decades, great efforts have been devoted to reuse industrial wastes and by-products from various industries as supplementary cementitious materials in order to reduce carbon dioxide(CO2) emission by reducing the use of Portland cement in construction. Oyster shell waste, originating from the fishery industry, is available in huge quantities in certain areas, and is generally discarded or landfilled. In this study, we aimed to reuse oyster shell as an alternative to limestone in limestone calcined clay cement(LC3). The oyster shell calcined clay cement(OC3) paste were produced and were characterized via X-ray diffraction, isothermal calorimetry, compressive strength tests, and thermogravimetry. The results revealed that OC3 pastes exhibited similar strength development and reactivities by pozzolanic reaction with LC3, which implies that oyster shell could be used as a substitute for limestone in LC3.

Current Status of Pyrometallurgical Process for the Reclamation of Urban Ore (도시광석(都市鑛石) 재자원화(再資源化)를 위한 건식공정(乾式工程)의 현황(現況))

  • Kim, Byung-Su;Lee, Jae-Chun;Shin, Do-Yeoun;Jeoung, Jin-Ki;Rhee, Kang-In;Sohn, Jeong-Soo;Yang, Dong-Hyo;Kim, Min-Seuk;Kim, Soo-Kyung
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.3-8
    • /
    • 2012
  • In the points of the environmental conservation and the recirculating utilization of limited resources, it is very important to recover valuable metals like Au, Ag, Pd, Cu, Sn, Ni, Co, and Li used as industrial raw materials from urban ores. From now, many processes have been developed for recovering the valuable metals contained in urban ores and some of them have been operated commercially. In the paper, pyrometallurgical processes developed for reclaiming valuable metals from urban ores will be briefly introduced.

Hydration Properties of Cement Matrix using Electrolysis Alkaline Aqueous and Ground Granulated Blast Furnace Slag (전기분해 알칼리 수 및 고로슬래그 미분말 혼입 시멘트 경화체의 수화 특성)

  • Jung, Yoong-Hoon;Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.185-190
    • /
    • 2021
  • Cement has been used as a main material in the modern construction industry. However, it has been pointed out as a main cause of global warming due to carbon dioxide generated during manufactured. Recently, research that replacing cement substitute to industrial by-products such as Blast Furnace Slag which is by-producted in steelworks. When Blast Furnace Slag is used as a cement substitute, it shows a problem of lower initial strength, which is caused by glassy membrane on the particle surface. In this study, we used Electrolysis Alkaline Aqueous to improve the usability and problem of lower initial strength. As a result of the experiment, cement matrix using Blast Furnace Slag and Alkaline Aqueous showed initial strength and hydrate product were developed than that using general mixing water. Also, as a result of porosity analysis, It was confirmed that cement matrix using Alkaline Aqueous and Blast Furnace Slag has a tighter structure in internal porosity and porosity distribution than using general mixing water.