DOI QR코드

DOI QR Code

A Sustainable and Viable Method to Recycle Oyster Shell Waste as an Alternative of Limestone in Limestone Calcined Clay Cement (LC3)

석회석 소성 점토 시멘트(LC3) 내 석회석 대체재로서 굴 패각의 친환경적인 재활용 방안

  • Her, Sung-Wun (Department of Architectural Engineering, Hanyang University) ;
  • Suh, Heong-Won (Department of Architectural Engineering, Hanyang University) ;
  • Park, Jae-Yeon (Department of Architectural Engineering, Hanyang University) ;
  • Im, Su-Min (Department of Architectural Engineering, Hanyang University) ;
  • Bae, Sung-Chul (Department of Architectural Engineering, Hanyang University)
  • 허성원 (한양대학교 건축공학과) ;
  • 서형원 (한양대학교 건축공학과) ;
  • 박재연 (한양대학교 건축공학과) ;
  • 임수민 (한양대학교 건축공학과) ;
  • 배성철 (한양대학교 건축공학과)
  • Received : 2020.05.19
  • Accepted : 2020.06.09
  • Published : 2020.06.30

Abstract

Over the last decades, great efforts have been devoted to reuse industrial wastes and by-products from various industries as supplementary cementitious materials in order to reduce carbon dioxide(CO2) emission by reducing the use of Portland cement in construction. Oyster shell waste, originating from the fishery industry, is available in huge quantities in certain areas, and is generally discarded or landfilled. In this study, we aimed to reuse oyster shell as an alternative to limestone in limestone calcined clay cement(LC3). The oyster shell calcined clay cement(OC3) paste were produced and were characterized via X-ray diffraction, isothermal calorimetry, compressive strength tests, and thermogravimetry. The results revealed that OC3 pastes exhibited similar strength development and reactivities by pozzolanic reaction with LC3, which implies that oyster shell could be used as a substitute for limestone in LC3.

지난 수십 년 동안 건축 분야에서 발생하는 이산화탄소 배출을 줄이기 위한 방법으로 다른 산업계의 폐기물 및 부산물을 시멘트의 대체재로 접목하기 위해 많은 노력이 있었다. 양식 산업에서 발생하는 굴 패각 폐기물은 특정 지역에서 대량으로 발생하며, 적절한 처리 방법의 부재로 인하여 일반적으로 매립되어지고 있다. 본 연구에서는 시멘트 대체재로 사용되어지고 있는 석회석 소성 점토 시멘트(LC3)의 주원료인 석회석의 대체재로써 굴 패각의 재활용 가능성을 평가하였다. 굴 패각 소성 점토 시멘트(OC3) 페이스트의 화학적·기계적 특성을 규명하기 위해 X-선 회절 분석, 등온 열량 측정, 압축강도 시험 및 열 중량 분석을 실시하였다. 결과적으로, OC3 페이스트는 LC3와 동일한 포졸란 반응에 의해 유사한 강도 발현 및 반응성을 보여주었으며, 이를 통해 굴 패각이 LC3의 주 원료인 석회석의 대체재로써 사용할 수 있다는 것을 확인할 수 있었다.

Keywords

References

  1. Antoni, M., Rossen, J., Martirena, F., Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone, Cement and Concrete Research, 42(12), 1579-1589. https://doi.org/10.1016/j.cemconres.2012.09.006
  2. Avet, F., Boehm-Courjault, E., Scrivener, K. (2019). Investigation of C-A-S-H composition, morphology and density in limestone calcined clay cement($LC^3$), Cement and Concrete Research, 115, 70-79. https://doi.org/10.1016/j.cemconres.2018.10.011
  3. Avet, F., Scrivener, K. (2018). Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement($LC^3$), Cement and Concrete Research, 107, 124-135. https://doi.org/10.1016/j.cemconres.2018.02.016
  4. Bullard, J.W., Jennings, H.M., Livingston, R.A., Nonat, A., Scherer, G.W., Schweitzer, J.S., Scrivener, K.L., Thomas, J.J. (2011). Mechanisms of cement hydration, Cement and Concrete Research, 41(12), 1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011
  5. Ferreiro, S., Canut, M.M.C., Lund, J., Herfort, D. (2019). Influence of fineness of raw clay and calcination temperature on the performance of calcined clay-limestone blended cements, Applied Clay Science, 169, 81-90. https://doi.org/10.1016/j.clay.2018.12.021
  6. Her, S., Park, D., Bae, S. (2018). "A study on feasibility of clinker manufacture using oyster shell as limestone substitute," Proceedings of the Korea Concrete Institute, 30(1), 405-406. [in Korean]
  7. Lertwattanaruk, P., Makul, N., Siripattarapravat, C. (2012). Utilization of ground waste seashells in cement mortars for masonry and plastering, Journal of Environmental Management, 111, 133-141. https://doi.org/10.1016/j.jenvman.2012.06.032
  8. Liang, C.F., Wang, H.Y. (2013). Feasibility of pulverized oyster shell as a cementing material, Advanced in Materials Science and Engineering, 809247.
  9. Maraghechi, H., Avet, F., Wong, H., Kamyab, H., Scrivener, K. (2018). Performance of limestone calcined clay cement($LC^3$) with various kaolinite contents with respect to chloride transport, Materials and Structures, 51(5), 125. https://doi.org/10.1617/s11527-018-1255-3
  10. Mo, K.H., Alengaram, U.J., Jumaat, M.Z., Lee, S.C., Goh, W.L., Yuen, C.W. (2018). Recycling of seashell waste in concrete: A review, Construction and Building Materials, 162, 751-764. https://doi.org/10.1016/j.conbuildmat.2017.12.009
  11. Moon, G., Oh, S., Jung, S., Choi, Y. (2017). Effect of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete, Construction and Building Materials, 135(15), 129-136. https://doi.org/10.1016/j.conbuildmat.2016.12.189
  12. Schneider, M. (2015). Process technology for efficient and sustainable cement production, Cement and Concrete Research, 78, 14-23. https://doi.org/10.1016/j.cemconres.2015.05.014
  13. Schneider, M., Romer, M., Tschudin, M., Bolio, H. (2011). Sustainable cement production-present and future, Cement and Concrete Research, 41(7), 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019
  14. Scrivener, K., Avet, F., Maraghechi, H., Zunino, F., Ston, J., Hanpongpun, W. (2019). Impacting factors and properties of limestone calcined clay cements($LC^3$), Green Materials, 7(1), 3-14. https://doi.org/10.1680/jgrma.18.00029
  15. Scrivener, K., Martirena, F., Bishnoi, S., Maity, S. (2018). Calcined clay limestone cements($LC^3$), Cement and Concrete Research, 114, 49-56. https://doi.org/10.1016/j.cemconres.2017.08.017
  16. Shah, V., Joseph, A.M., Bishnoi, S. (2015). Durability characteristics of sustainable low clinker cements: A review, Calcined Clays for Sustainable Concrete, Springer, 523-530.
  17. Song, H., Jeong, Y., Bae, S., Jun, Y., Yoon, S., Oh, J.E. (2018). A study of thermal decomposition of phases in cementitious systems using HT-XRD and TG, Construction and Building Materials, 169, 648-661. https://doi.org/10.1016/j.conbuildmat.2018.03.001
  18. Sung, C., Kim, Y. (2010). Strength and durability properties of polymer concrete utilizing oyster shell powder as a filler, Journal of the Korean Society of Agricultural Engineers, 52(6), 125-134. https://doi.org/10.5389/KSAE.2010.52.6.125
  19. Yoon, G., Kim, B., Kim, B., Han, S. (2003). Chemical-mechanical characteristics of crushed oyster-shell, Waste Management, 23(9), 825-834. https://doi.org/10.1016/S0956-053X(02)00159-9