• Title/Summary/Keyword: 사후분포

Search Result 236, Processing Time 0.024 seconds

Prediction of extreme rainfall with a generalized extreme value distribution (일반화 극단 분포를 이용한 강우량 예측)

  • Sung, Yong Kyu;Sohn, Joong K.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.857-865
    • /
    • 2013
  • Extreme rainfall causes heavy losses in human life and properties. Hence many works have been done to predict extreme rainfall by using extreme value distributions. In this study, we use a generalized extreme value distribution to derive the posterior predictive density with hierarchical Bayesian approach based on the data of Seoul area from 1973 to 2010. It becomes clear that the probability of the extreme rainfall is increasing for last 20 years in Seoul area and the model proposed works relatively well for both point prediction and predictive interval approach.

Derivation of SDF(Severity-Duration-Frequency) Curve using Non-Stationary Drought Frequency Analysis (비정상성 가뭄빈도해석에 의한 SDF 곡선의 유도)

  • Jang, Ho Won;Park, Seo Yeon;Kim, Tae Woong;Lee, Joo Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.150-150
    • /
    • 2017
  • 기후변화로 인하여 극한 홍수와 극한 가뭄 발생이 증가할 것으로 전망하고 있어 이에 대한 위험이 대두되고 있는 실정이다. 홍수 및 가뭄 수문시계열의 빈도해석시에 일반적으로 활용되는 정상성 빈도해석기법은 수문자료의 정상성을 기반으로 한 빈도해석이 대부분이기 때문에 기후변화 및 수문자료의 비정상성을 반영한 새로운 빈도해석 기법이 요구되고 있는 상황이다. 본 연구에서는 5개의 대표 관측지점(서울, 포항, 추풍령, 여수, 광주)를 선별하고 1976년부터 2015년까지 일강우자료를 활용하여 기상학적 가뭄지수인 SPI(Standardized Precipitation Index)를 산정하였다. 산정한 SPI의 경향성을 Mann-Kendall 분석을 하였으며, 정상성 및 비정상성 빈도해석을 위하여 최적확률분포로 선정된 GEV 분포 적용하였다. 본 연구에서는 가뭄빈도해석을 위하여 SPI를 입력자료로 활용하였으며, 산정된 SPI의 비정상성을 반영한 비정상성 빈도해석의 경우 Bayesian 모형을 기반으로 한 MCMC(Markov Chain Monte Carlo) 모의를 이용하여 극치분포의 사후분포 매개변수를 추정하였다. 추정 값을 바탕으로 하여 가뭄의 관측소별 빈도해석을 실시하였고 재현기간별-지속기간별 가뭄심도를 추정하여 관측소별 가뭄심도-지속기간-빈도(SDF,Severity-Duration-Frequency) 곡선을 유도하였다. 본 연구를 통하여 정상성과 비정상성 빈도해석 결과의 비교연구를 수행하였으며 기후변화에 따른 비정상 시계열로 구성된 가뭄빈도해석에 매우 유용하게 적용될 수 있을 것으로 나타났다.

  • PDF

Evaluation of the Runoff Characteristics due to the Dam Operations Using Bayesian Theorem (베이지안 기법을 이용한 댐 운영 전후 유출 특성 평가)

  • Na, Wooyoung;Jeong, Jinung;Kim, So Eun;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.109-109
    • /
    • 2020
  • 본 연구에서는 댐 운영 전과 후의 유출 특성 변화를 평가하는 데 베이지안 기법을 이용하였다. ROM과 같은 댐 운영은 자연유량(유입량)에 대해 주어진 방법을 적용하여 수행하는 일종의 조정(수정) 과정이다. 이 과정은 무작위 변량에 해당하는 유입량을 대상으로 하며, 그 과정의 결과로 역시 유출량이라는 무작위 변량이 생성된다. 기 확정된 또는 고정된 조정(수정) 과정은 일정한 함수로 표현 가능하다. 결과적으로 이 과정은 사전확률에 우도함수를 적용하여 사후확률을 유도하는 것과 같다. 즉, 베이지안 기법의 적용과정과 다르지 않다. ROM으로는 일정률, 일정량, 일정률-일정량 ROM(Rigid ROM) 세 가지를 고려하였다. 각 ROM별 방류 특성을 고려하여 우도함수를 결정하면, 베이지안 기법을 적용하여 사후분포, 즉, 방률량의 분포함수를 유도할 수 있다. 베이지안 기법을 적용하여 유도된 결과는 ROM을 적용하여 직접 모의한 결과와 비교함으로써 검증된다. 본 연구에서는 대상 댐으로 안동댐을 선정하였으며, 안동댐에서 관측된 2010년부터 2019년까지의 10년치 유입량 자료를 이용하였다. 즉, 2010년부터 2019년까지의 안동댐 유입량 자료는 댐 운영 이전의 유출특성을 대변하고, 모의된 유출량은 댐 운영 이후의 유출특성을 대변한다.

  • PDF

저온 브라인 침지에 의한 어종별 사후 이화학적 변화의 차이

  • 이기봉;심길보;김태진;한인근;조영제
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.163-164
    • /
    • 2001
  • 생선회 육질의 단단함(toughness)은 생선회의 맛을 좌우하는 중요한 요인이며, 육질의 단단함은 결합조직의 주성분인 collagen의 함량 및 분포 형태에 의해서 결정되어지는 어종에 따른 고유의 단단함(background toughness)과 사후 ATP의 분해와 함께 일어나는 myosin과 actin의 결합에 의한 actomyosin복합체의 형성에 따른 근육수축에 의한 단단함(actomyosin toughness)으로 이뤄진다. (중략)

  • PDF

Self-Adaptation Algorithm Based on Maximum A Posteriori Eigenvoice for Korean Connected Digit Recognition (한국어 연결 숫자음 인식을 일한 최대 사후 Eigenvoice에 근거한 자기적응 기법)

  • Kim Dong Kook;Jeon Hyung Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.590-596
    • /
    • 2004
  • This paper Presents a new self-adaptation algorithm based on maximum a posteriori (MAP) eigenvoice for Korean connected digit recognition. The proposed MAP eigenvoice is developed by introducing a probability density model for the eigenvoice coefficients. The Proposed approach provides a unified framework that incorporates the Prior model into the conventional eigenvoice estimation. In self-adaptation system we use only one adaptation utterance that will be recognized, we use MAP eigenvoice that is most robust adaptation. In series of self-adaptation experiments on the Korean connected digit recognition task. we demonstrate that the performance of the proposed approach is better than that of the conventional eigenvoice algorithm for a small amount of adaptation data.

A research on Bayesian inference model of human emotion (베이지안 이론을 이용한 감성 추론 모델에 관한 연구)

  • Kim, Ji-Hye;Hwang, Min-Cheol;Kim, Jong-Hwa;U, Jin-Cheol;Kim, Chi-Jung;Kim, Yong-U
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.95-98
    • /
    • 2009
  • 본 연구는 주관 감성에 따른 생리 데이터의 패턴을 분류하고, 임의의 생리 데이터의 패턴을 확인하여 각성-이완, 쾌-불쾌의 감성을 추론하기 위해 베이지안 이론(Bayesian learning)을 기반으로 한 추론 모델을 제안하는 것이 목적이다. 본 연구에서 제안하는 모델은 학습데이터를 분류하여 사전확률을 도출하는 학습 단계와 사후확률로 임의의 생리 데이터의 패턴을 분류하여 감성을 추론하는 추론 단계로 이루어진다. 자율 신경계 생리변수(PPG, GSR, SKT) 각각의 패턴 분류를 위해 1~7로 정규화를 시킨 후 선형 관계를 구하여 분류된 패턴의 사전확률을 구하였다. 다음으로 임의의 사전 확률 분포에 대한 사후 확률 분포의 계산을 위해 베이지안 이론을 적용하였다. 본 연구를 통해 주관적 평가를 실시하지 않고 다중 생리변수 인식을 통해 감성을 추론 할 수 있는 모델을 제안하였다.

  • PDF

A Bayesian Approach to Geophysical Inverse Problems (베이지안 방식에 의한 지구물리 역산 문제의 접근)

  • Oh Seokhoon;Chung Seung-Hwan;Kwon Byung-Doo;Lee Heuisoon;Jung Ho Jun;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.262-271
    • /
    • 2002
  • This study presents a practical procedure for the Bayesian inversion of geophysical data. We have applied geostatistical techniques for the acquisition of prior model information, then the Markov Chain Monte Carlo (MCMC) method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter.

The Risk Assessment and Prediction for the Mixed Deterioration in Cable Bridges Using a Stochastic Bayesian Modeling (확률론적 베이지언 모델링에 의한 케이블 교량의 복합열화 리스크 평가 및 예측시스템)

  • Cho, Tae Jun;Lee, Jeong Bae;Kim, Seong Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.29-39
    • /
    • 2012
  • The main objective is to predict the future degradation and maintenance budget for a suspension bridge system. Bayesian inference is applied to find the posterior probability density function of the source parameters (damage indices and serviceability), given ten years of maintenance data. The posterior distribution of the parameters is sampled using a Markov chain Monte Carlo method. The simulated risk prediction for decreased serviceability conditions are posterior distributions based on prior distribution and likelihood of data updated from annual maintenance tasks. Compared with conventional linear prediction model, the proposed quadratic model provides highly improved convergence and closeness to measured data in terms of serviceability, risky factors, and maintenance budget for bridge components, which allows forecasting a future performance and financial management of complex infrastructures based on the proposed quadratic stochastic regression model.

Bayesian estimation of the Korea professional baseball players' hitting ability based on the batting average (한국프로야구 선수들의 타율에 기반된 타격 능력의 베이지안 추정)

  • Cho, Yong Ju;Lee, Kwang Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.197-207
    • /
    • 2015
  • In baseball game, the hitting ability of batter is frequently assessed by a batting average, a run batted in, a home run, a run scored, an on-base percentage, etc. Recently, more comprehensive indicators such as OPS, ISO, SECA, TA, RC and XR are often used. But, these measures generally shows large deviations since they are calculated from the data for a certain period of time, and they are not an estimate of a population parameter, either. In this paper, we will presume the pure hitting ability of the korea professional baseball players as a parameter which is depend upon at bat. We will estimate the parameter by using the Bayesian method.

Bayesian parameter estimation and prediction in NHPP software reliability growth model (NHPP소프트웨어 신뢰도 성장모형에서 베이지안 모수추정과 예측)

  • Chang, Inhong;Jung, Deokhwan;Lee, Seungwoo;Song, Kwangyoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.755-762
    • /
    • 2013
  • In this paper we consider the NHPP software reliability model. And we deal with the maximum likelihood estimation and the Bayesian estimation with conjugate prior for parameter inference in the mean value function of Goel-Okumoto model (1979). The parameter estimates for the proposed model is presented by MLE and Bayes estimator in data set. We compare the predicted number of faults with the actual data set using the proposed mean value function.