• Title/Summary/Keyword: 사출성형품

Search Result 190, Processing Time 0.023 seconds

일체형 샌달용 자동화 MOLD의 게이트 형상 최적화

  • 류미라;이권희;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.82-82
    • /
    • 2004
  • 우리나라는 신발 생산 특히 부품소재 부분에서 세계적인 경쟁력을 갖추고 있는 것으로 평가되고 있으며, 이 중 E.V.A midsole은 가볍고 충격흡수성 등과 같은 특성이 매우 우수하여 샌달의 midsole 부품으로 널리 사용되고 있지만 현재의 midsole 제조방식은 생산성의 한계에 직면하고 있다. 즉, 패턴 갑피(upper)와 Phylon mold를 각각 생산한 후 별도의 공정에서 두 제품을 접착하여 샌달을 만들기 때문에 두 제품을 따로 생산하므로 현재와 같은 방식의 제조에 의한 기존 방식의 샌달은 제작비용의 증가 및 생산성 저하 등의 여러 가지 문제점을 가지고 있어 보다 새로운 일체형 자동화 사출 mold에 의한 샌달 제조방식의 필요성이 절실한 실정에 있다.(중략)

  • PDF

A study of structural analysis for plastic parts considering injection molding effects (성형효과를 고려한 플라스틱 사출품의 구조해석)

  • 박상현;김용환;김선우;이시호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.217-220
    • /
    • 2003
  • Due to the lighter weight and the higher freedom of design than metals plastics have been spot lighted in a wide number of applications. In the making plastic parts injection-molding process is one of the most general methods. During the injection molding process, filling-packing-cooling process, plastics have exposed to several external stresses and then plastic parts injected have molding effects which are known as anisotropic properties, orientation, and residual stress. Those molding effects are often shown as unexpected phenomena which are warpage, strength decrease, stiffness reduction, etc. In case of glass fiber filed plastics these effects are more significant than the ufilled ones. Therefore the molding effects have to be considered in the parts design using glass fiber reinforced plastics. We have developed the interface program in order to consider the molding effects in structural analyses of plastic parts using Heirarchical structural searching and layer handling in direction of thickness algorithm. The advantages of this program are the freedom of FE mesh between molding and structural analysis, the variable layer to the thickness direction of parts and the conveniences of data transferring and checking

  • PDF

A Study on the Filling Imbalance in a Geometrically Balanced Injection Mold (기하학적 균형을 갖춘 금형에서 발생하는 성형품의 충전 불균형에 관한 연구)

  • 구양;김병탁;정영득;한성렬;한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.931-937
    • /
    • 2004
  • Simultaneous filling is a goal in plastic injection mold that has multi cavities. The moldings which have not been filled at the same time have undesired faults such as dimension inaccuracy, residual stress, law mechanical strength, etc. The best way to simultaneous fill is to be injected in a geometrically balanced runner system. In a general processing, however, in balanced runner system mold, filling imbalance would be observed in cavities. These phenomena result from molten polymer's characteristics and circumstances in balanced runner. In this study, the degree of filling imbalance (DFI) was defined for showing rate of filling imbalance in geometrically balanced injection mold that has 8 cavities. Before the main experiment, an injection molding simulation was conducted to know a pattern of filling imbalance with Moldflow software. There were somewhat differences between results of experiment and simulation about the filling imbalance. The reason for the difference was that the software have not concerned about a situation in a real flow channel. It was also investigated how the injection speed affected on filling imbalance in the experiment.

Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Subsequent Cooling after Ejection (사출 성형품의 금형내 잔류음력과 이형후 냉각에 의한 후변형 해석)

  • Yang, Sang-Sik;Gwon, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.340-348
    • /
    • 2002
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of thermo-rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint have been done. Free volume theory has been used to represent the non-equilibrium density state during the fast cooling. At ejection, instantaneous deformation takes place due to the redistribution of in-mold residual stress. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of out-of-mold deformation. In this study, emphasis is also made on the treatment with regard to lateral constraint types during molding process. Two typical mold geometries are used to test the numerical simulation modeling developed in this study.

Investigation the part shrinkage in injection molding for glass fiber reinforced thermoplastics (유리섬유가 첨가된 수지에서 사출성형품의 성형수축에 관한 연구)

  • Mo Jung-Hyuk;Lyu Min-Young
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.159-165
    • /
    • 2004
  • The shrinkages of injection molded parts are different in molding operational conditions and mold design. It also differs from resins. The shrinkages of injection molded parts for PBT (polybutylene terephthalate), PC (polycarbonate),and glass reinforced PBT and PC have been studied for various operational conditions of injection molding. The part shrinkage of crystalline polymer, PBT was higher than that of amorphous polymer, PC by about two times. The part shrinkages of both polymers decreased as glass fiber content increases. Higher Injection temperature and lower injection pressure resulted in a higher shrinkage in both PBT and PC resins. As mold temperature increases the part shrinkage of PC decreased. However, the part shrinkage of PBT increased as mold temperature increases. The part shrinkage of both PBT and PC resins decreased as gate size increases since the pressure delivery is mush easier for a larger gate size. The part shrinkage of flow direction was less than that of the perpendicular direction to the flow for both pure and glass fiber reinforced resins. The part shrinkage at the position close to the gate was less than that of the position far from the gate.

  • PDF

A Study on Improvement of Accuracy using Geometry Information in Reverse Engineering of Injection Molding Parts (사출성형품의 역공학에서 Geometry 정보를 이용한 정밀도 향상에 관한 연구)

  • Kim, Yeon-Sul;Lee, Hui-Gwan;Hwang, Geum-Jong;Gong, Yeong-Sik;Yang, Gyun-Ui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.99-106
    • /
    • 2002
  • This paper proposes an error compensation method that improves accuracy with geometry information of injection molding parts. Geometric information can give an improved accuracy in reverse engineering. Measuring data can not lead to get accurate geometric model, including errors of physical parts and measuring machines. Measuring data include errors which can be classified into two types. One is molding error in product, the other is measuring error. Measuring error includes optical error of laser scanner, deformation by probe forces of CMM and machine error. It is important to compensate these in reverse engineering. Least square method (LSM) provides the cloud data with a geometry compensation, improving accuracy of geometry. Also, the functional shape of a part and design concept can be reconstructed by error compensation using geometry information.

Investigation of the Part Shrinkage in Injection Molding for Class Fiber Reinforced Thermoplastics (유리섬유가 첨가된 수지에서 사출성형품의 성형수축에 관한 연구)

  • Mo J.-H.;Lyu M.-Y.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.515-521
    • /
    • 2004
  • The shrinkages of injection molded parts are different in molding operational conditions and mold design. It also differs from resins. The shrinkages of injection molded parts fur PBT (polybutylene terephthalate), PC (polycarbonate), and glass reinforced PBT and PC have been studied for various operational conditions of injection molding. The part shrinkage of crystalline polymer, PBT was higher than that of amorphous polymer, PC by about two times. The part shrinkages of both polymers decreased as glass fiber content increases. Higher injection temperature and lower injection pressure resulted in a higher shrinkage in both PBT and PC resins. As mold temperature increases the part shrinkage of PC decreased. However, the part shrinkage of PBT increased as mold temperature increases. The part shrinkages of PBT and PC resins decreased as gate size increases since the pressure delivery is mush easier for a larger gate size. The part shrinkage of flow direction was less than that of the perpendicular direction to the flow for both pure and glass fiber reinforced resins. The part shrinkage at the position close to the gate was less than that of the position far from the gate.

A study on the prediction of injection pressure and weight of injection-molded product using Artificial Neural Network (Artificial Neural Network를 이용한 사출압력과 사출성형품의 무게 예측에 대한 연구)

  • Yang, Dong-Cheol;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.53-58
    • /
    • 2019
  • This paper presents Artificial Neural Network(ANN) method to predict maximum injection pressure of injection molding machine and weights of injection molding products. 5 hidden layers with 10 neurons is used in the ANN. The ANN was conducted with 5 Input parameters and 2 response data. The input parameters, i.e., melt temperature, mold temperature, fill time, packing pressure, and packing time were selected. The combination of the orthogonal array L27 data set and 23 randomly generated data set were applied in order to train and test for ANN. According to the experimental result, error of the ANN for weights was $0.49{\pm}0.23%$. In case of maximum injection pressure, error of the ANN was $1.40{\pm}1.19%$. This value showed that ANN can be successfully predict the injection pressure and the weights of injection molding products.

A Simulation Study on the Development of Injection Mold for the Parts of Phone Camera Lens Module (시뮬레이션을 활용한 폰카메라 렌즈모듈 부품용 사출금형개발)

  • Kim, Hye Jeong;Kim, Jae Hoon;Kim, Yeong Gyoo;Song, Jun Yeob;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.83-92
    • /
    • 2013
  • The demand of a camera-lens-module which is installed in mobile phone has been increased explosively as the increase of mobile phone market. Recently, two missions are given to the parts manufacturer of lens module, and they are how to keep the quality of injection moulding process as the increase of resolution, and how to decrease manufacturing cost. In this paper, a simulation study is introduced which is used for developing barrel and shield considering the double-cassette type of mould. At first, the simulation for injection process using Mold Flow$^{TM}$ is applied in the phase of mould design, and mechanical simulation using DPM Assembly$^{TM}$ is applied for collision detection between picking robot and mould. As a result, the productivity increased more than 300%.

A Study on the surface characteristics of LGP mold and product depending on different fabrication methods of optical pattern (광학패턴 가공방법에 따른 LGP 금형 및 성형품의 표면특성 연구 : Laser Ablation, Chemical Etching, LiGA-Reflow 방식)

  • Do, Y.S.;Kim, J.S.;Ko, Y.B.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.213-216
    • /
    • 2007
  • LGP (light guide plate) of LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of the major components which affects the product quality of LCD. In the present study, the optical patterns of LGP(2.2") are manufactured by three different methods, namely, laser ablation, chemical etching and LiGA - reflow, respectively. The pattern surface images and roughness of mold and product were compared to check the optical characteristics. From the results of measurement the optical patterns fabricated by LiGA - reflow method showed the best geometric structure as intended in design and the lowest roughness among those.

  • PDF