• 제목/요약/키워드: 사전/사후분포

검색결과 95건 처리시간 0.023초

베이지안 이론을 이용한 감성 추론 모델에 관한 연구 (A research on Bayesian inference model of human emotion)

  • 김지혜;황민철;김종화;우진철;김치중;김용우
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2009년도 추계학술대회
    • /
    • pp.95-98
    • /
    • 2009
  • 본 연구는 주관 감성에 따른 생리 데이터의 패턴을 분류하고, 임의의 생리 데이터의 패턴을 확인하여 각성-이완, 쾌-불쾌의 감성을 추론하기 위해 베이지안 이론(Bayesian learning)을 기반으로 한 추론 모델을 제안하는 것이 목적이다. 본 연구에서 제안하는 모델은 학습데이터를 분류하여 사전확률을 도출하는 학습 단계와 사후확률로 임의의 생리 데이터의 패턴을 분류하여 감성을 추론하는 추론 단계로 이루어진다. 자율 신경계 생리변수(PPG, GSR, SKT) 각각의 패턴 분류를 위해 1~7로 정규화를 시킨 후 선형 관계를 구하여 분류된 패턴의 사전확률을 구하였다. 다음으로 임의의 사전 확률 분포에 대한 사후 확률 분포의 계산을 위해 베이지안 이론을 적용하였다. 본 연구를 통해 주관적 평가를 실시하지 않고 다중 생리변수 인식을 통해 감성을 추론 할 수 있는 모델을 제안하였다.

  • PDF

고준위 방사성 폐기물 처분장 확률론적 안전성평가 신뢰도 제고를 위한 입력 파라미터 연속 베이지안 업데이팅 모듈 개발 (Sequential Bayesian Updating Module of Input Parameter Distributions for More Reliable Probabilistic Safety Assessment of HLW Radioactive Repository)

  • 이연명;조동건
    • 방사성폐기물학회지
    • /
    • 제18권2호
    • /
    • pp.179-194
    • /
    • 2020
  • 기존의 확률론적 안전성 평가의 신뢰도 제고를 위하여 잘 알려진 입력 파라미터의 일반적인 분포에 새롭게 측정된 신뢰도 있는 데이터를 결합하여 사후분포를 구할 수 있는 베이지안 업데이팅 방법론을 제안하였다. 마코프체인 몬테 칼로 샘플링 기법의 알고리듬을 통한 GoldSim 모듈도 개발하였다. 복수의 입력 파라미터의 사전분포에 대해 연속적으로 사후분포를 구해낼 수 있는 베이지안 업데이팅이 가능하도록 개발된 이 모듈을 GoldSim 템플릿 형태의 기존의 GSTSPA 프로그램으로 이행하여 보다 신뢰도 있는 확률론적 방사성폐기물 처분 시스템 안전성 평가가 가능하도록 하였다. 이는 기존에 존재하는 사전분포의 일반적인 형태는 취하되 새롭게 얻어지는 실제 측정치나 전문가들의 의견을 기존의 분포에 적용하여 보다 더 높은 믿음을 갖는 입력 파라미터의 사후분포를 얻을 수 있게 한다. 균열암반 내 핵종 이동에 관련된 몇 개의 입력 파라미터의 사전분포의 세차례의 연속적 업데이팅을 통해 프로그램의 유용성도 예시하였다. 이 연구를 통하여 처분시스템과 같이 장기적 평가가 필요하고 넓은 모델링 지역을 가지며 측정된 입력자료가 부족한 경우 보다 더 믿음직한 방법으로 안전성 평가를 수행할 수 있는 것을 보였다.

콘크리트 구조물의 합리적인 압축강도 추정기법 연구 (Realistic Estimation Method of Compressive Strength in Concrete Structure)

  • 오병환;양인환
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.241-249
    • /
    • 1999
  • 실제 구조물의 정확하고 합리적인 압축강도 추정을 위해서는 통계학적으로 많은 실험데이타가 필요하다. 그러나, 실제로 압축강도 자료가 제한되어 있기 때문에 추정에 어려움이 있다. 따라서, 본 연구에서는 적은 자료를 가지고 콘크리트의 실제적인 압축강도 추정을 위해 합리적인 베이시안 기법을 도입하여 콘크리트 강도추정 방법을 제시하였다. 여기서, 콘크리트의 평균 압축강도는 확률변수로 고려한다. 콘크리트 압축강도의 베이시안 업데이팅을 위해 사전확률분포는 기존의 자료를 반영하여 표현하며, 우도함수는 측정치의 특성을 반영하였다. 사후확률분포는 사전확률분포와 우도함수를 조합하여 나타내었다. 콘크리트 교량 현장에서 제작한 실린더 공시체로부터 측정한 자료를 이용하여 수치해석을 수행하였다. 수치해석결과는 상대적으로 적은 개수의 측정자료를 사용하고도 실제에 가까운 사후확률분포를 추정할 수 있는 것을 보여 주고 있다. 또한, 우도함수 분포의 신뢰구간에 대한 사전확률분포의 신뢰구간의 상대적인 크기는 사후확률분포의 결정에 영향을 미치는 것으로 나타났다. 본 논문에서 제시된 방법은 적은 현장측정자료를 가지고도 합리적인 강도추정이 가능함을 보여주고 있으며, 실제에 유용하게 활용될 수 있을 것으로 사료된다.

영상분할을 위한 2차원 무한 은닉 마코프 모형의 비모수적 베이스 추정 (Bayesian Parameter Estimation of 2D infinite Hidden Markov Model for Image Segmentation)

  • 김선월;조완현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.477-479
    • /
    • 2011
  • 본 논문에서는 1차원 은닉 마코프 모델을 2차원으로 확장하기 위하여 노드들의 마코프 특성이 인과적인 관계를 갖는 마코프 메쉬 모델을 이용하여 완전한 2차원 HMM의 구조를 갖는 모델을 제안한다. 마코프메쉬 모델은 이웃시스템을 통하여 이전의 시점을 정의하고, 인과적인 관계를 통하여 전이확률의 계산을 가능하게 한다. 또한 영상의 최적의 분할을 위하여 계층적 디리슐레 과정을 사전분포로 두어 고정된 상태의 수가 아닌 무한의 상태 수를 갖는 2차원 HMM을 제안한다. HDP로 정의된 사전분포와 관측된 표본 자료의 정보를 갖는 우도함수를 결합한 사후분포의 베이스 추정은 깁스샘플링 알고리즘을 이용하여 계산된다.

A Comparison study of Hybrid Monte Carlo Algorithm

  • 황진수;전성해;이찬범
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.135-140
    • /
    • 2000
  • 베이지안 신경망 모형(Bayesian Neural Networks Models)에서 주어진 입력값(input)은 블랙 박스(Black-Box)와 같은 신경망 구조의 각 층(layer)을 거쳐서 출력값(output)으로 계산된다. 새로운 입력 데이터에 대한 예측값은 사후분포(posterior distribution)의 기대값(mean)에 의해 계산된다. 주어진 사전분포(prior distribution)와 학습데이터에 의한 가능도함수(likelihood functions)를 통해 계산되어진 사후분포는 매우 복잡한 구조를 갖게 됨으로서 기대값의 적분계산에 대한 어려움이 발생한다. 이때 확률적 추정에 의한 근사 방법인 몬테칼로 적분을 이용한다. 이러한 방법으로서 Hybrid Monte Carlo 알고리즘은 우수한 결과를 제공하여준다(Neal 1996). 본 논문에서는 Hybrid Monte Carlo 알고리즘과 기존에 많이 사용되고 있는 Gibbs sampling, Metropolis algorithm, 그리고 Slice Sampling등의 몬테칼로 방법들을 비교한다.

  • PDF

베이지안 방식에 의한 지구물리 역산 문제의 접근 (A Bayesian Approach to Geophysical Inverse Problems)

  • 오석훈;정승환;권병두;이희순;정호준;이덕기
    • 지구물리와물리탐사
    • /
    • 제5권4호
    • /
    • pp.262-271
    • /
    • 2002
  • 본 연구에서는 지구물리 자료의 베이지안 역산을 효과적으로 수행하는 방법에 관해 논의하였다. 베이지안 처리에서 가장 문제가 되는 사전확률분포를 구하기 위해 지구통계학적 방법을 적용하였으며, 사후확률분포의 추정을 위해 MCMC(Markov Chain Monte Carlo) 방법을 적용하였다. 쌍극자배열 전기비저항 탐사 자료의 2차원 역산을 위해 슐럼버저배열 전기비저항탐사 자료와 시추공 자료를 사전 정보로 이용하였으며, 이들 사전정보에 대해 지구통계학적 방법을 적용하여 사전확률분포를 작성하였다. 쌍극자배열 전기비저항 탐사 자료를 최대 우도함수로 하는 사후확률분포는 차원이 매우 높은 적분을 요구하므로, 이를 추정하기 위해 MCMC기술을 적용하였으며, 보다 효율적인 접근을 위해 Gibbs샘플링 방법을 이용하였다. 그 결과 비모수적 방식으로 사후확률분포를 분석함으로써 보다 신뢰성 있는 해를 구할 수 있었으며, 주변화(marginalization)된 사후확률분포를 이용하여 다양한 분석을 적용할 수 있었다.

NHPP소프트웨어 신뢰도 성장모형에서 베이지안 모수추정과 예측 (Bayesian parameter estimation and prediction in NHPP software reliability growth model)

  • 장인홍;정덕환;이승우;송광윤
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.755-762
    • /
    • 2013
  • 본 논문은 NHPP 소프트웨어 신뢰성모형에서 모수추정과 고장시간에 대한 예측을 다루고자 한다. 소프트웨어 신뢰성모형 Goel-Okumoto모형에서 평균값 함수에 대한 최우추정과 경험적 사전분포를 가정한 공액사전분포에서 베이지안 추정을 다루었다. 실제 자료에서 두 가지 추정법에 의한 모수 추정값을 제공하였으며, 모형의 적합성을 판정하고, 고장수에 대한 예측값을 비교하였다.

매스매티카를 이용하여 3-모수를 갖는 와이블분포에 대한 피셔 정보행렬의 유도 (Derivation of the Fisher information matrix for 3-parameters Weibull distribution using mathematica)

  • 양지은;백호유
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권1호
    • /
    • pp.39-48
    • /
    • 2009
  • 피셔 정보행렬은 모수 추론에서 중요한 역할을 한다. 특히 비정보 사전분포를 이용한 사후분포로 유도하는 객관적 베이지안 추론에서 사용된다. 또한 기하학에서는 거리함수의 한 예로서 이용된다. 모수가 많아질수록 피셔 정보행렬의 계산이 복잡하여진다. 따라서 본 논문에서는 매스매티카를 이용하여 계산상 필요한 프로그램을 적용시켜 신뢰성 이론에서 사용되는 3-모수 와이블분포에 대한 피셔 정보행렬을 유도하였다.

  • PDF

지구물리 자료의 고속 베이지안 역산 (Fast Bayesian Inversion of Geophysical Data)

  • 오석훈;권병두;남재철;이덕기
    • 지구물리
    • /
    • 제3권3호
    • /
    • pp.161-174
    • /
    • 2000
  • 베이지안 역산(Bayesian inversion)은 불충분한 자료를 가지고 지하구조를 추정해야 하는 지구물리자료의 해석에 있어서 안정적이고 신뢰를 줄 수 있는 방법 중의 하나이다. 관측 자료가 측정 과정부터 불확실성을 함유하고 있으며, 역산에 이용되는 이론 자료 또한 모델의 매개변수화에 따른 각종 불확실성을 포함하고 있다. 따라서 지구물리 자료의 역산은 확률적으로 접근하는 것이 가장 바람직하며 베이지안 역산은 이에 대한 처리뿐만 아니라, 추정에 대한 신뢰도와 불확실성에 대한 이론적 근거를 제공한다. 그러나 대부분의 베이지안 역산이 고차원의 적분을 필요로 하므로 몬테 카를로 방법과 같은 대규모의 계산이 요구되는 방법에 의해 사후 확률분포가 구해지는 경우가 많다. 이는 특히 지구물리 자료와 같이 고도의 비선형 자료에 대하여 매우 적합한 접근 방법이기는 하지만, 점차 현장화, 고속화되어가는 자료의 해석 경향에 맞추어 간략하게 사후 확률분포를 근사한 수 있는 기법의 연구 또한 필요하다. 따라서 이 연구에서는 관측자료와 사전 확률분포가 정규분포에 의해 근사 될 수 있는 지구물리자료에 대한 베이지안 역산에 대해 논의 하고자 한다. 사전 확률분포의 작성을 위해 지구통계학적 기법이 이용되었으며, 관측자료의 통계적 불화실성을 추정하기 위해 교차 검사(cross-validation) 방법을 이용하여 공분산(covariance)을 유도하고 그것에 의한 우도 함수(likelihood function)를 작성하였다. 베이지안 해석을 위해 두 확률분포를 곱하여 근사적인 사후 확률분포를 얻을 수 있었으며, 이에 대해 최적화(optimization) 기법을 이용하여 최대 사후 확률(Maximum a Posterior)을 따르는 지하 구조를 얻을 수 있었다. 또한 사후 확률 분포의 공분산 항을 이용하여 지하 비저항 구조를 시뮬레이션 하여 불확실성분석을 수행하였다.

  • PDF

라플라스와 이중 파레토 벌점의 비교: LASSO와 Elastic Net (Comparison of Laplace and Double Pareto Penalty: LASSO and Elastic Net)

  • 경민정
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.975-989
    • /
    • 2014
  • 연속적인 변수 선택과 계수 추정을 동시에 활용할 수 있다는 특성 때문에 LASSO (Tibshirani, 1996)와 Elastic Net (Zou와 Hastie, 2005)은 다양한 분야에서 활발하게 사용되고 있다. 조건부 라플라스와 이중 파레토 사전분포를 적용한 공액계층모형을 표현하였고, 각각의 사전분포에 대한 완전 조건 사후분포를 도출하였다. 제안된 사전분포를 적용한 벌점회귀모형을 비교하기 위한 모의 실험을 진행하였고, 예측정확도를 판단하기 위해 아시아 국가 실패(the collapse of governments in Asia)의 실제 데이터에 제안한 모형을 적용하였다.