• Title/Summary/Keyword: 사용자 추천

Search Result 1,461, Processing Time 0.031 seconds

Recommender System using Context Information and Spatial Data Mining (상황정보와 공간 데이터 마이닝 기법을 이용한 추천 시스템)

  • Lee Bae-Hee;Jo Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.667-669
    • /
    • 2005
  • 유비쿼터스 시대를 향하여 나아가는 현대 사회에서 사람들을 위한 추천시스템은 필수 불가결한 요소 중의 하나이다. 추천 시스템 중에서 사용자의 성별, 나이, 직업 등의 인구 통계적 요소를 고려한 시스템이 주를 이루고 있지만 이러한 시스템에는 어느 정도의 한계가 있다. 추천에 있어서 사용자의 기분, 날씨, 온도 등 주변 환경의 상황이 반영되지 않고 있고 학습을 위한 데이터에 대한 신뢰도 또한 문제가 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 상황정보(Context Information)와 공간 데이터 마이닝(Spatial Data Mining) 기법을 이용한 향상된 추천 시스템을 제안한다. 제안하는 시스템에서는 보다 정확한 추천을 위해 첫째, 날씨, 온도, 사용자의 기분 등의 상황정보를 고려하였다. 그리고 사용자의 유사도 측정을 통해 학습 데이터의 신뢰도를 향상시켰으며, 셋째, 의사결정 트리(Decision Tree) 기법을 이용하여 추천의 정확도를 높였다. 실험을 통하여 측정한 결과 제안하는 추천시스템이 기존의 인구 통계적 요소만을 고려한 시스템이나 의사결정 트리만을 이용한 시스템보다 향상된 성능을 보였다.

  • PDF

(Efficient Methods for Combining User and Article Models for Collaborative Recommendation) (협력적 추천을 위한 사용자와 항목 모델의 효율적인 통합 방법)

  • 도영아;김종수;류정우;김명원
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.540-549
    • /
    • 2003
  • In collaborative recommendation two models are generally used: the user model and the article model. A user model learns correlation between users preferences and recommends an article based on other users preferences for the article. Similarly, an article model learns correlation between preferences for articles and recommends an article based on the target user's preference for other articles. In this paper, we investigates various combination methods of the user model and the article model for better recommendation performance. They include simple sequential and parallel methods, perceptron, multi-layer perceptron, fuzzy rules, and BKS. We adopt the multi-layer perceptron for training each of the user and article models. The multi-layer perceptron has several advantages over other methods such as the nearest neighbor method and the association rule method. It can learn weights between correlated items and it can handle easily both of symbolic and numeric data. The combined models outperform any of the basic models and our experiments show that the multi-layer perceptron is the most efficient combination method among them.

A Recommendation System Based on Customer Preference Analysis and Filter Management (고객 성향 분석과 필터 관리 기반 추천 시스템)

  • 이성구
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.592-600
    • /
    • 2004
  • A recommendation system, which is an application area of e-CRM in e-commerce environment, provides individualized goods recommendation service that meets the demand of individual users. In general, existing recommendation systems require extensive historic user information in application domains. However, the method of recommendation based on static historic user information needs to respond flexibly to users'demand that changes rapidly and sensitively over time and in domains including a variety of users. In addition, it is difficult to recommend for new users who are not fall into any of existing domains. To overcome such limitations and provide flexible recommendation service, this study designed and implemented CPAR (Customer Preference Analysis Recommender) system that supports customer preference analysis and filter management. The filtering management capacity of the present system eases the necessity of extensive information about new users. In addition, CPAR system was implemented in XML-based wireless Internet environment for recommendation service independent from platforms and not limited by time and place.

  • PDF

Bayesian network based Music Recommendation System considering Multi-Criteria Decision Making (다기준 의사결정 방법을 고려한 베이지안 네트워크 기반 음악 추천 시스템)

  • Kim, Nam-Kuk;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.345-352
    • /
    • 2013
  • The demand and production for mobile music increases as the number of smart phone users increase. Thus, the standard of selection of a user's preferred music has gotten more diverse and complicated as the range of popular music has gotten wider. Research to find intelligent techniques to ingeniously recommend music on user preferences under mobile environment is actively being conducted. However, existing music recommendation systems do not consider and reflect users' preferences due to recommendations simply employing users' listening log. This paper suggests a personalized music-recommending system that well reflects users' preferences. Using AHP, it is possible to identify the musical preferences of every user. The user feedback based on the Bayesian network was applied to reflect continuous user's preference. The experiment was carried out among 12 participants (four groups with three persons for each group), resulting in a 87.5% satisfaction level.

Clustering-Based Recommendation Using Users' Preference (사용자 선호도를 사용한 군집 기반 추천 시스템)

  • Kim, Younghyun;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.277-284
    • /
    • 2017
  • In a flood of information, most users will want to get a proper recommendation. If a recommender system fails to give appropriate contents, then quality of experience (QoE) will be drastically decreased. In this paper, we propose a recommender system based on the intra-cluster users' item preference for improving recommendation accuracy indices such as precision, recall, and F1 score. To this end, first, users are divided into several clusters based on the actual rating data and Pearson correlation coefficient (PCC). Afterwards, we give each item an advantage/disadvantage according to the preference tendency by users within the same cluster. Specifically, an item will be received an advantage/disadvantage when the item which has been averagely rated by other users within the same cluster is above/below a predefined threshold. The proposed algorithm shows a statistically significant performance improvement over the item-based collaborative filtering algorithm with no clustering in terms of recommendation accuracy indices such as precision, recall, and F1 score.

Information Recommendation in Mobile Environment using a Multi-Criteria Decision Making (다기준 의사 결정 방법을 이용한 모바일 환경에서의 정보추천)

  • Park, Han-Saem;Park, Moon-Hee;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.306-310
    • /
    • 2008
  • Since the preference for information recommendation service can change according to the context, we should know the user context before providing information recommendation. This paper proposes recommender system that considers multi-user preference in mobile environment and attempted to apply it to restaurant recommendation. To model the preference of individual users in mobile environment, we have used Bayesian network, and restaurant recommendation mostly should consider not an individual user but several users, so this paper has used AHP of multi-criteria decision making process to obtain the preference of several users based on one of individual users. For experiments, we conducted recommendation in 10 different situations, and finally, we confirmed that the proposed system was evaluated as a good one using a usability test of SUS.

Game Recommendation System Based on User Ratings (사용자 평점 기반 게임 추천 시스템)

  • Kim, JongHyen;Jo, HyeonJeong;Kim, Byeong Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.9-19
    • /
    • 2018
  • As the recent developments in the game industry and people's interest in game streaming become more popular, non-professional gamers are also interested in games and buying them. However, it is difficult to judge which game is the most enjoyable among the games released in dozens every day. Although the game sales platform is equipped with the game recommendation function, it is not accurate because it is used as a means of increasing their sales and recommending users with a focus on their discount products or new products. For this reason, in this paper, we propose a game recommendation system based on the users ratings, which raises the recommendation satisfaction level of users and appropriately reflect their experience. In the system, we implement the rate prediction function using collaborative filtering and the game recommendation function using Naive Bayesian classifier to provide users with quick and accurate recommendations. As the result, the rate prediction algorithm achieved a throughput of 2.4 seconds and an average of 72.1 percent accuracy. For the game recommendation algorithm, we obtained 75.187 percent accuracy and were able to provide users with fast and accurate recommendations.

Social Network Group Recommendation Using Dynamic User Profiles and Collaborative Filtering (동적 사용자 프로필 및 협업 필터링을 이용한 소셜 네트워크 그룹 추천)

  • Yang, Heetae;Cha, Jaehong;Ahn, Minje;Lim, Jongtae;Li, He;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.11-20
    • /
    • 2013
  • Recently, as SNS services have been increased, studies on recommendation schemes have been actively done. Recommendation scheme provides various favorable or needed services with users on real time. Group recommendation provides users with suitable groups based on their preference. In this paper, we propose a new group recommendation scheme considering user profiles and collaborative filtering in social networks. The proposed scheme can solve the problems of the static profile based group recommendation scheme because it collects the recent group activities and updates user profiles. It also recommends the more various groups by reflecting the similar tendencies of other users within a group through collaborative filtering. Our experimental results show that the proposed scheme recommends various groups that significantly considers the user's changing preferences compared to the existing scheme.

Effective Association Rule Method for Personalized Recommender System (개인화 추천시스템을 위한 효율적 연관 규칙 방법)

  • Ko, Byoung-Jin;Yu, Young-Hoon;Jo, Ceun-Sik
    • Annual Conference of KIPS
    • /
    • 2002.11c
    • /
    • pp.2133-2136
    • /
    • 2002
  • 인터넷 특성상 방대한 양의 정보와 상품 등으로 사용자들이 원하는 정보를 찾기 위해서 많은 시간을 낭비하고 있는 실정이다. 이러한 사용자의 시간 소모를 중이기 위해서 추천 시스템이 개발되었다. 현재 인터넷 상의 추천 기술 중에서 가장 많이 사용하는 기법으로는 협력적 여과(Collaborative filtering) 방법이다. 그러나, 협력적 추천 방법으로 추천 받기 위해서는 특정수 이상의 아이템에 대한 평가가 필요하며, 또한 비슷한 성향을 가지는 일부 사용자 정보에 근거하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 이러한 문제점이 발생되므로 최근에는 데이터 마이닝(Data Mining) 기법 중 연관 규칙(Association Rule)을 이용한 추천 시스템이 개발되고 있다[1,10]. 그러나, 연관 규칙 기법은 개인별 사용자의 성향을 반영하지 못하는 단점이 있다[4]. 연관 규칙은 단지 대용량 데이터 베이스에서 아이템간의 지지도(Support)와 신뢰도(Confidence)에 근거하여 규칙을 발견하는 특징을 가지고 있기 때문이다. 즉 개인성향을 무시하고 아이템간의 연관성만을 근거로 하여 아이템을 추천하기 때문이다. 본 논문에서는 효율적인 연관 규칙을 이용한 개인화 추천 시스템을 구현하기 위해서 연관 규칙과 여과 방법을 통합한 시스템을 제안한다. 본 시스템에 대하여 성능 비교 실험을 수행함으로써 제안한 방법의 타당성을 제시한다.

  • PDF

Design and Implementation of Contents-based Customized movie recommendation system using meta weight learning (메타 가중치 학습을 활용한 내용 기반의 맞춤형 영화 추천시스템 설계 및 구현)

  • An, Hyeon Woo;You, Hea Woon;Kim, Dea Yeol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.587-590
    • /
    • 2020
  • 최근, 디지털 콘텐츠 산업이 폭발적으로 성장됨에 따라 고객 유치를 위한 개인화 추천 기술들이 많은 주목을 받고 있다. 개인화 추천 방식들을 큰 갈래로 나누어 본다면 협업 필터링 기술과 내용 기반 기술로 나눌 수 있다. 협업 필터링의 경우 개인화 추천에는 적합하지만 사용자 평가 데이터의 양이 방대해야 하며 초기에 평가자가 없는 콘텐츠에 대해 추천할 수 없는 초기 평가자 문제가 존재한다. 따라서 매일 방대한 양의 콘텐츠가 편입되는 분야에서 사용하기에 큰 결점이 될 수 있다. 본 논문에서는 영화들의 정보가 담긴 데이터 셋과 사용자 평가 데이터, 그리고 사용자의 선호 기준을 의미하는 메타 가중치를 활용한 내용 기반의 맞춤형 영화 추천 시스템을 제안한다. 논문에서는 먼저, 영화를 고를 때 일반적으로 중요시 보는 속성들을 활용하여 영화의 특징 벡터를 구성하고, 이를 사용자 평가와 결합하여 개인의 선호에 대한 특징 벡터를 구성하는 방법을 제안하며, 구성된 데이터와 코사인 유사도, 메타 가중치를 활용하여 사용자 선호와 유사한 영화들을 도출하는 방법을 제안한다. 또한, 평가데이터를 활용하여 구현된 추천시스템의 검증 프로세스를 구성하고, 검증 프로세스를 활용한 손실 함수를 설계하여 적합한 메타 가중치를 학습하는 방법을 제시한다. 본 논문에서 제안하는 시스템은 다수의 속성을 조합하여 활용하므로 추천 결과가 과도하게 특수화 되지 않을 수 있으며, 메타 가중치라는 요소를 통해 더욱 개인화 된 추천을 제공할 수 있다.

  • PDF