• 제목/요약/키워드: 사용자 추천

검색결과 1,461건 처리시간 0.038초

감성 및 상황 정보 융합 기반의 확장된 협업 필터링 기법을 이용한 음악추천시스템 (Music Recommendation System Using Extended Collaborative Filtering Based On Emotion & Context Information Fusion)

  • 최현석;배효철;서정진;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 하계학술대회
    • /
    • pp.82-84
    • /
    • 2011
  • 본 논문에서는 사용자의 개인적 취향에 맞는 음악을 추천할 수 있는 사용자 감성/상황 정보 융합 기반의 협업 필터링의 확장을 이용한 음악추천시스템을 소개한다. 본 논문에서 제안하는 시스템은 확장된 협업 필터링 방식을 사용하여 추천을 해준다. 이를 위해 본 논문에서는 추천의 근거가 되는 감성과 무드를 Thayer 음악 무드 모델을 이용하여 총 12 가지의 감성 정보, 8 cluster 의 무드 정보로 분류했다. 또한 사용자의 상황 정보, 활동 & 날씨 & 시간에 대해서도 분류하였다. 분류된 정보는 음악감상 UI 를 이용하여 사용자 별 감성, 상황 그리고 음원의 무드 정보로 수집이 되었고, 수집된 정보를 기반으로 사용자 감성과 청취 곡 횟수를 퓨전하여 평가치 매트릭스를 만들었으며, 이를 바탕으로 단계적 협업 필터링에 의해 사용자 취향에 맞는 음악을 추천해 주는 방법이다.

  • PDF

온톨로지 기반 웹 콘텐츠 추천 기법 (Web Contents Recommendation based on Ontology)

  • 김제민;박영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.294-299
    • /
    • 2006
  • 추천 시스템은 사용자 프로파일을 기반으로 개인 취향에 맞는 정보나 제품에 대한 이용성을 향상 시킨다. 본 논문에서는 시멘틱 환경 내에서 사용자 개개인에 맞는 웹 콘텐츠를 제공하기 위한 온톨로지 기반의 웹 콘텐츠 추천 방법론을 제안한다. 이를 위해서 2가지에 초점을 두었다. 첫 번째, 사용자 프로파일의 쓰임새를 향상시키기 위해 온톨로지 모델을 적용한다. 이는 비슷한 서비스를 제공하는 여러 웹 서비스 사이트에서 사용자의 기호 정보를 공유할 수 있다는 이점을 갖는다. 또한 온톨로지를 기반으로 생성된 사용자 프로파일은 콘텐츠 추천 점수 계산을 위한 정확한 입력 데이터를 제공한다. 두 번째로 각각의 웹 콘텐츠들의 추천 점수를 계산하는 함수를 정의한다. 제안하고자 하는 함수는 각 웹 콘텐츠의 계층구조와 웹 콘텐츠를 구성하는 속성들의 관계를 명시한 온톨로지를 기반으로, 사용자 프로파일의 내용과 웹 콘텐츠의 개념 유사도(Concept Similarity)와 관계 유사도(Relation Similarity) 구한다. 따라서 본 논문에서는 전체 유사도(Concept Similarity+Relation Similarity)를 추천 점수로 적용한다.

  • PDF

체크인 시퀀스 기반의 next POI 추천 시스템을 위한 네거티브 샘플링 방법 (A Negative Sampling Method for Next POI Recommender Systems Based on Check-in Sequences)

  • 김예빈;배홍균;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.470-472
    • /
    • 2023
  • 최근 위치 기반 장소 (POI) 추천 서비스가 많이 사용되면서, 사용자의 이전 방문지들에 대한 체크인 시퀀스를 기반으로 현재 (다음으로) 방문할 법한 POI 를 찾아 사용자에게 추천하는, next POI 추천 시스템에 관한 연구가 활발히 진행되고 있다. 하지만, 기존 연구들의 경우 next POI 추천을 위한 모델 학습 시, 사용자의 네거티브 POIs 에 관한 정교한 샘플링 없이 사용자 선호도를 추론해왔다. 본 연구에서는, 사전 학습된 별도의 사용자 선호도 추론 모델을 통해 사용자의 네거티브 POI로서 쉽게 분류되기 어려운 하드 네거티브 POIs 를 찾고, 이들을 위주로 수행되는 하드 네거티브 샘플링 방법을 새롭게 제안한다. 우리는 실 세계 데이터셋을 이용한 실험을 통해, 제안 방안이 기존 연구들에서 사용되어 온 랜덤 네거티브 샘플링 방법 대비 recall@5 기준, 최대 16.4%까지 추천 정확도를 향상시킬 수 있음을 확인하였다.

협업 필터링 기반 개인화에서의 상품군 중립적 사용자 프로파일링 타당성 검토 (Feasibility Study on Cross-Product Category User Profiling in Collaborative Filtering Based Personalization)

  • 김종우;박수환;이홍주
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.257-263
    • /
    • 2005
  • 초기에 하나의 상품 카테고리만을 다루던 전자상거래 사이트들이 브랜드 확립 후에 다른 상품 카테고리까지 확대해 나가는 모습을 많이 보아왔다. 고객이 아직 방문하지 않은 신규 상품 카테고리의 상품에 대하여 기존 상품 카테고리에서 만들어진 사용자 프로파일을 활용하여 개인화된 추천을 할 수 있다면, 고객이 다양한 상품 카테고리를 방문하도록 유도할 수 있을 것이다. 하지만 일반적으로 전자상거래 사이트에서는 상품 카테고리별로 사용자의 선호도를 파악하여 개인화된 추천을 수행하기 때문에, 해당 카테고리 내 상품의 구매나 방문 기록이 없다면 개인화된 추천을 수행하기가 어렵다 . 본 논문에서는 협업 필터링을 통해 신규 상품카테고리 내의 상품을 추천하기 어려운 고객들을 대상으로 기존의 사용자 선호도 데이터를 활용하여 신규 상품 카테고리 내의 상품을 추천하는 방안의 타당성을 살펴보도록 한다. 즉, 기존 사용자의 특정상품 카테고리 선호도 데이터를 통해 사용자간 유산도를 계산하고, 이를 추천하려는 타 상품 카테고리 내의 상품들에 대한 예측 선호도 계산에 활용 타당성을 살펴본다. 이를 실증적으로 검토하기 위해서, Yes24 사이트의 서적, 음반, DVD 3개의카테고리 내의 상품을 방문한 웹 패널 데이터를 이용하여 타당성 분석을 수행하였다. 분석 결과, 동일 상품 카테고리 내의 선호도 정보를 가지고 현업 필터링을 수행하는 것보다는 추천 성과가 낮았지만 활용할만한 추천 성과를 보였으며, 활용하는 상품 카테고리와 예측하는 상품 카테고리별로 추천성과가 상이했다.

  • PDF

사용자 지식을 반영한 메일 폴더 추천 방법론 (Folder Recommendation Based on User Knowledge)

  • 류미;박주석;김재경
    • 지능정보연구
    • /
    • 제10권3호
    • /
    • pp.133-146
    • /
    • 2004
  • 네트워크 기술의 발달로 인하여 사용자가 접하게 되는 정보의 종류와 양이 급속하게 증가되고 있으며, 이로 인해 사용자는 자신이 필요로 하는 정보를 찾아내어 관리하는데 많은 시간과 노력을 소비하고 있다. 이에 본 연구에서는 대표적인 추천기법 중에 하나인 내용기반 추천(Content-based Recommendation)과 사용자 지식에 의해 정의된 키워드 유사성(Keyword Affinity)을 이용하여 사용자가 보다 적은 비용으로 자신의 정보를 효율적으로 관리할 수 있도록 지원하는 방법론을 제시한다. 즉, 사용자의 선호도가 자주 변하거나 새로운 내용이 지속적으로 생성되는 환경에서는 추천의 성능이 떨어지고, 사용자의 선호도가 충분히 축적되기까지 정확한 추천이 어려운 내용기반 추천의 한계점을 사용자 지식에 의해 정의된 키워드 유사성을 응용하여 해결한다. 본 연구는 수시로 새로운 정보가 생성되고 삭제되는 개인 이메일 환경을 그 대상으로 하며, 사용자의 효율적인 이메일 관리를 위한 폴더 추천을 지원한다. 또한 실험을 통해 기존에 연구되었던 폴더 추천 방법론과 성능을 비교함으로써 본 연구에서 제시하는 방법론을 검증하였다.

  • PDF

정보 필터링을 사용한 개인화된 추천시스템 (Personalized Recommender System Using Information Filtering)

  • 곽미라;조동섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2807-2809
    • /
    • 2001
  • 본 논문에서는 웹기반 쇼핑몰에서 사용자들에게 새로운 상품을 추천하는 시스템을 제안한다. 추천시스템이란 사용자의 필요와 취향을 고려하여 그에게 적합한 새로운 상품이나 대신할만한 상품 등을 추천하는 시스템이다. 지금까지 제안된 대부분의 추천시스템들은 협력적인 필터링 기법을 쓰고 있는데, 이러한 시스템의 경우 사용자들의 선호도 점수 정보가 부족하면 정확한 추천결과를 기대할 수 없다. 본 논문에서는 내용기반 필터링 기법을 협력적 필터링 기법과 함께 사용하여 이와 같은 문제를 해결하고자 한다.

  • PDF

협업필터링을 이용한 음악 추천 시스템 (A Music Recommendation System using Collaborative Filtering)

  • 박주현;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1163-1165
    • /
    • 2015
  • 최근 들어, 사용자의 선호도를 고려한 음악추천 시스템의 연구가 활발히 진행되고 있다. 대부분의 음악 추천 시스템은 사용자가 들었던 곡을 분석하여 유사한 노래를 추천하는 시스템을 사용하여 비슷한 성향에서 벗어나지 못한 추천으로 다양한 사용자의 선호도를 만족시키는데 한계가 있었다. 본 논문에서는 개인 정보인 성별, 나이, 지역, 계절, 장르에 가중치를 활용하여 각각의 개인에 가장 알맞은 음악 추천 시스템을 설계하고 구현한다.

인터넷 쇼핑몰에서의 다양한 관점을 가지는 상품 추천 시스템의 구현 (The Implementation of Recommender System for Internet Shopping Mall Using Multiple View Points)

  • 천인국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (하)
    • /
    • pp.1021-1024
    • /
    • 2001
  • 본 논문은 인터넷 쇼핑몰에서의 효율적인 상품 추천 시스템의 구조를 제안한다. 본 상품 추천 시스템은 상품 정보 데이터베이스와 추천 엔진으로 이루어지며 사용자에게 질문을 던져서 사용자의 조건을 수집한 다음, 이를 상품 정보와 비교하여 가장 최적의 상품을 추천한다. 추천 시스템에서는 특정 상품이 사용자의 조건과 얼마나 일치하는지를 점수로 표시하고 이들 점수를 모든 상품에 대하여 계산한 다음, 가장 높은 점수를 얻은 상품을 추천하게 된다. 이 시스템의 장점은 조건에 정확히 부합하는 상품이 없는 경우에도 가장 조건과 많이 일치하는 상품을 추천할 수 있다는 것이다. 또한 하나의 관점이 아닌 서로 다른 관점을 가지고 있는 여러 전문가가 추천하는 것처럼 본 상품 추천 시스템도 3가지에서 최적의 상품을 추천한다. 하나의 예로 핸드폰을 추천하는 인터넷 사이트를 구축하고 테스트하였다.

  • PDF

사용자-상품 행렬의 최적화와 협력적 사용자 프로파일을 이용한 그룹의 대표 선호도 추출 (Extracting Typical Group Preferences through User-Item Optimization and User Profiles in Collaborative Filtering System)

  • 고수정
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권7호
    • /
    • pp.581-591
    • /
    • 2005
  • 협력적 여과 시스템은 희박성과 단지 두 고객만의 선호도에 따른 상관 관계로 추천을 제공한다는 문제점과 군집내의 가장 유사한 두 사용자만의 상관 관계에 의하여 추천을 한다는 단점이 있다. 또한, 상품의 내용을 기반으로 하지 않고 선호도만을 기반으로 하므로 추천의 정확도가 사용자에 의해 평가한 자료에만 의존한다는 문제점도 있다. 이와 같이 평가된 자료를 추천에 이용할 경우, 모든 사용자가 모든 상품에 대해 성의 있게 평가할 수는 없으므로 추천의 정확도가 낮아지는 결과를 가져온다. 따라서 본 논문에서는 엔트로피을 사용하여 사용자가 상품에 대하여 평가한 자료를 기반으로 검증되지 않은 사용자를 제외시키고, 다음으로 사용자 프로파일을 생성한 후 사용자를 군집시키며, 마지막으로 그룹의 대표 선호도를 추출하는 방법을 제안한다. 기존의 사용자 군집을 이용한 방법은 군집내의 사용자만을 대상으로 유사한 사용자를 찾으므로 희박성은 해결할 수 있으나 그 외의 단점을 해결하지 못하였다. 제안한 방법에서는 상품에 대해 평가한 선호도 뿐만 아니라 상품에 대한 정보를 반영하기 위하여 연관 단어 마이닝의 방법에 의해 협력적 사용자의 프로파일을 생성하고, 이를 기반으로 벡터 공간 모델과 K-means 알고리즘에 의해 사용자를 군집시킨다. 군집된 사용자를 대상으로 상품의 선호도와 사용자의 엔트로피를 병합함으로써 최종적으로 그룹의 대표 선호도를 추출한다. 대표 선호도를 이용한 추천 시스템은 한 사용자의 부정확한 선호도를 기반으로 추천을 하는 경우에 나타나는 추천의 부정확도 문제를 해결하며, 군집내의 가장 유사한 두 사용자만의 상관 관계에 의하여 추천을 하는 단점을 보완하고, 또한 그룹 내에 가장 유사한 사용자를 찾는 데 소요되는 시간을 절약할 수 있다는 장점을 갖는다.

협업 여과의 희소성을 개선한 교육용 컨텐츠 추천 시스템 (Improving Sparsity Problem of Collaborative Filtering in Educational Contents Recommendation System)

  • 이용준;이세훈;왕창종
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (A)
    • /
    • pp.830-832
    • /
    • 2003
  • 본 논문에서는 교육용 컨텐츠 추천시스템의 정확도를 향상시키고자 사용자 모델 정보를 활용하여 기존의 협업여과 방법의 유사도 재산을 보완함으로써 추천의 정확도를 향상시키는 방법을 제안하고자 한다. 협업여과방법은 사용자의 평가와 비슷한 선호도를 가지고 다른 사용자의 평가를 기반으로 제품이나 항목을 예측하고 이를 사용자에게 추천한다. 그러나 협업여과방법은 일정 수 이상의 상품이나 항목에 대한 평가가 이루어져야 하며, 사용자의 평가가 적은 경우 희소성으로 인한 평가의 정확도가 낮아지는 단점을 기지고 있다. 본 논문에서는 인구 통계 정보를 이용한 가상 평가 점수를 반영하여 유사도 계산시 희소성을 낮춰 예측의 정확도를 향상시키고자 한다.

  • PDF