Journal of the Korea Society of Computer and Information
/
v.10
no.2
s.34
/
pp.133-141
/
2005
We need to study on simulation method of user's mobility Patterns for the performance analysis of the location management in wireless mobile networks. For this purpose ,this paper presents a user mobility model of wireless mobile networks with regular Patterns Sometimes mobile users randomly move , but they show the movement characteristics that regularly change their locations in some patterns in given time slots. So, we suggest the mobility model that can describe user's time related movement patterns. This model consists of some elements-positions, transitions , transition Probabilities which are variable, and some geographical paths for each transitions. We describe the simulation method for users' mobilities with random movements and regular movements , too. The simulation results by the model show that the suggested model can generate movement scenarios having regular patterns related with location and time.
이동단말기기의 성능이 발전함에 따라 사용자에게 다양한 서비스를 제공할 수 있게 되었다. 하지만 사용자의 취향이나 의도에 따라 이용하는 선호 서비스는 일부분에 불과하다. 이것은 사용자마다 라이프스타일에 의한 서비스 사용 패턴에 차이가 있음에도 불구하고 획일화된 UI만을 제공하기 때문이다. 본 논문에서는 이동단말기기를 통하여 시간에 따른 사용자의 위치 및 콘텐츠 사용정보를 수집하고 의사결정트리를 이용하여 사용자의 콘텐츠 사용패턴을 추론한다. 또한, 추론한 콘텐츠 사용 패턴을 기반으로 개인화된 UI 구성 방법을 제안한다. 개인화된 지능성 UI를 통하여 사용자들이 라이프 스타일에 적합한 다양한 콘텐츠를 사용하게 되고, 이동단말기기의 활용성 또한 높아질 것을 기대할 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.562-564
/
2004
사용자의 위치정보는 에이전트가 상황에 적합한 서비스를 제공하는데 중요하게 사용될 수 있으며 정확한 위치 추적 및 활용 방안에 대한 활발한 연구가 진행되고 있다. 그 중에서 사용자의 다음 위치를 예측하는 것은 사용자에게 필요한 서비스를 명시적인 요청없이 미리 제공하는데 유용하게 쓰일 수 있다. 본 논문에서는 GPS신호를 이용하여 사용자의 위치 이동경로를 학습하고 사용자의 이동에 기반한 서비스 제공 방법을 제안한다. GPS에 의해 관측된 위치 이동경로는 시간 순서의 데이터에 적합하도록 SOM을 변형한 RSOM과 마르코프 모델을 이용하여 학습되며, 새로 관측된 사용자 위치 데이터에 대해 다음 이동 패턴을 예측하는 기능을 가진다. 실제 캠퍼스에서 수집된 데이터를 이용하여 제안한 방법의 가능성을 평가한다.
본 논문에서는 휴대용 기기 사용자들의 이동 궤적을 기록한 대용량의 GPS 위치 데이터 집합으로부터 각 사용자의 이동 패턴 모델을 학습해내고, 이 모델을 적용하여 각 사용자의 다음 방문 장소를 효율적으로 예측할 수 있는 맵리듀스 기반의 분산 데이터 마이닝 시스템을 소개한다. 본 시스템은 크게 사용자별 이동 패턴 모델을 학습하는 후단부와 실시간으로 다음 방문 장소를 예측하는 전단부로 구성된다. 이 중에서 후단부는 주요 장소 추출, 이동 궤적 변환, 이동 패턴 모델 학습 등 총 3개의 맵리듀스 작업 모듈들로 구성된다. 이에 반해, 본 시스템의 전단부는 이동 경로 후보군 생성, 다음 장소 예측 등 총 2개의 맵리듀스 작업 모듈들로 구성된다. 그리고 본 시스템을 구성하는 각각의 작어마다 분산처리를 극대화할 수 있도록 맵과 리듀스 함수를 설계하였다. 끝으로, 대용량의 GeoLife 벤치마크 데이터 집합을 이용하여 본 논문에서 소개한 시스템의 예측 성능을 분석하기 위한 실험을 수행하였고, 이를 통해 본 시스템의 높은 성능을 확인할 수 있었다.
사용자의 이동성으로 인하여 이동 정보서비스 환경에서 안정된 서비스 품질(QoS)로 사용자가 원하는 정보를 제공받는데 많은 한계점이 있다. 이동성과 더불어 무선 네트워크의 낮은 대역폭, 높은 전송지연 등의 고유 특성을 부분적으로 보완하기 위해서 유효 데이터의 캐쉬 혹은 프리페칭 기법의 적용이 심도 있게 연구되고 있다. 본 논문은 공간지역성과 시간지역성을 가진 사용자의 이동패턴을 고려한 프리페칭기법을 제안한다. 제안한 프리페칭기법은 사용자의 특정 영역의 방문 빈도수와 일정 시간 이상 머물러 있었던 정도에 따라 정보의 중요도가 높은 것으로 판단하여 이를 적용함으로써 프리페칭의 유효성을 높이는 기초를 제공한다.
The Journal of Korean Association of Computer Education
/
v.8
no.6
/
pp.123-132
/
2005
There are many research results for the location update cost minimization of location management in cellular networks. For minimizing the location update cost, we have to take in consideration of each users' mobility pattern. This paper suggests location area list generation and a 3-step paging method based on users' movement history with the users' profiles. Users' mobility has not only geographical regular patterns but also time-related regularity. So, the method extracts users' movement regularities in both geography and time from their movement history, and generate location area list considering the regularities. For the performance analysis of the suggested method, we have executed a simulation for suggested method with user's mobility model. The results of the simulation show that suggested algorithm has some merits in the location management cost.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.10a
/
pp.585-588
/
2010
The prediction of user location within a building can be applied to many areas like visitor guiding. The existing methods for solving this problem consider limited number of locations a user visited in the past to predict the current location. It cannot model the complex movement patterns, and makes the system inefficient by modeling simple ones too detail. Also it causes prediction errors. In this paper, there is no restriction on the length of past movement patterns to consider for current location prediction. For this purpose, a modified search tree is used. The search tree is constructed to make exact matching as needed for location prediction. The search tree makes the efficient and accurate prediction possible.
본 논문에서는 효율적인 이동성 관리를 위한 이동성 예측 기법을 소개한다. 이동 컴퓨팅 환경에서는 사용자가 지리적 위치의 제약없이 언제, 어디서나 다른 네트워크 시스템과 메시지를 주고 받을수 있다. 그러나, 통신자원의 부족, 잦은 접속단절 , 사용자의 움직임 등과같은 이동 컴퓨팅 시스템의 특징 때문에, 지능적이고 효율적인 이동성관리가 요구된다. 이동 컴퓨팅 시스템이 지능적이고 효율적인 이동성관리를 통하여 높은 질의 서비스를 제공하기 위해서는 이동 사용자의 움직임 패턴들을 능동적으로 고려하는 것이 바람직하다. 본 논문에서는 이동 사용자의 과거수일, 수개월동안의 움직임 패턴 즉, 이동사용자의 위치연혁으로부터 미래 위치를 예측하는 지능적 이동성 예측기법(intelligent mobility prediction scheme)을 제안한다. 모델링 방법으로서 뉴로-퍼지 추론시스템(neuro-fuzzy inference system)을 이용한다. 뉴로-퍼지 추론 시스템이 이동 사용자가 움직이게 되는 미래 위치를 예측하기 때문에 , 본 논문에서의 이동성 예측 기법은 통신채널의 사전 배당, 부족한 자원의 사전 할당등을 위해서 사용될 수 있다. 게다가, 본 논문의 시뮬레이션 결과는 제안하는 기법이 다양한 이동 환경에 대해서 높은 예측 정확도를 갖음을 보여준다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.277-279
/
2002
웹 로그 기반의 웹 사용 마이닝은 명시적 평가 의존, 확장성 결여, 그리고 다차원 및 희박한 데이터에 성능이 떨어지는 협력적 여과의 문제를 다소 해결할 수 있다. 그러나 k-Means 군집화 방법으로 생성된 군집속 유사 사용자 이동 패턴으로는 클러스터속 사용자 전체의 선호도를 표현할 수 없으므로 사용자 이동 패턴인 트랜잭션들로부터 사용 프로파일을 유도해야 한다. 본 논문에서는 유사 군집 사용자들의 관심과 기호를 표현할 수 있도록 클러스터 내부 데이타로부터 평균 가중치 및 빈발 지지도 임계값을 사용하여 개선된 사용 프로파일을 생성하고 실험 데이터를 통한 예측력과 추천에 대한 성능을 평가한다.
Proceedings of the Korean Information Science Society Conference
/
2008.06d
/
pp.367-372
/
2008
최근 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 개발하기 위한 목적으로 이동 객체의 다양한 패턴들 중 의미있는 지식인 유용한 이동 패턴을 탐사하는 문제가 주요 이슈로 부각되고 있다. 이에 본 논문에서는 방대한 이동 객체의 이력 데이터 집합으로부터 특정 지점들 간의 최적 이동 경로나 정해진 시간내의 스케줄링 경로 탐색과 같이 복합적인 시간 및 공간 제약을 갖는 최적 이동 패턴을 탐사하는 문제에 대해 정의하고, 다양한 이동 패턴들 중 가장 빈발하게 발생하는 패턴이 최적의 비용을 소요할 것이라는 가정을 기반으로 최대 빈발 2-시퀀스를 추출하는 방법을 제안한다. 후보 시퀀스 집합으로부터 지지도 계산을 통해 추출되는 빈발 2-시퀀스들의 순차적인 조합은 패턴 탐사를 수행하는 각 패스 진행 시 후보 시퀀스 항목의 차수가 점차 감소하여 최적 이동 패턴 탐사 방법에 효과적으로 적용된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.