• Title/Summary/Keyword: 사용자 이동 패턴

Search Result 236, Processing Time 0.04 seconds

A Simulation Method for Terminal Mobilities with Regularity in Mobile Networks (이동 망에서 규칙성을 갖는 단말기의 이동성을 위한 모의실험 방안)

  • Cho Hyun-joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.133-141
    • /
    • 2005
  • We need to study on simulation method of user's mobility Patterns for the performance analysis of the location management in wireless mobile networks. For this purpose ,this paper presents a user mobility model of wireless mobile networks with regular Patterns Sometimes mobile users randomly move , but they show the movement characteristics that regularly change their locations in some patterns in given time slots. So, we suggest the mobility model that can describe user's time related movement patterns. This model consists of some elements-positions, transitions , transition Probabilities which are variable, and some geographical paths for each transitions. We describe the simulation method for users' mobilities with random movements and regular movements , too. The simulation results by the model show that the suggested model can generate movement scenarios having regular patterns related with location and time.

  • PDF

Developing Personally Mobile User Interface (의사결정트리 기반의 개인화된 지능성 UI 개발)

  • Jeong, Minwoo;Oh, Jehwan;Lee, Eunseok
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.519-522
    • /
    • 2009
  • 이동단말기기의 성능이 발전함에 따라 사용자에게 다양한 서비스를 제공할 수 있게 되었다. 하지만 사용자의 취향이나 의도에 따라 이용하는 선호 서비스는 일부분에 불과하다. 이것은 사용자마다 라이프스타일에 의한 서비스 사용 패턴에 차이가 있음에도 불구하고 획일화된 UI만을 제공하기 때문이다. 본 논문에서는 이동단말기기를 통하여 시간에 따른 사용자의 위치 및 콘텐츠 사용정보를 수집하고 의사결정트리를 이용하여 사용자의 콘텐츠 사용패턴을 추론한다. 또한, 추론한 콘텐츠 사용 패턴을 기반으로 개인화된 UI 구성 방법을 제안한다. 개인화된 지능성 UI를 통하여 사용자들이 라이프 스타일에 적합한 다양한 콘텐츠를 사용하게 되고, 이동단말기기의 활용성 또한 높아질 것을 기대할 수 있다.

Learning User′s Moving Patterns for Location-based Services with Intelligent Agent (지능형 에이전트의 위치기반 서비스를 위한 사용자의 위치이동패턴 학습)

  • 한상준;강현지;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.562-564
    • /
    • 2004
  • 사용자의 위치정보는 에이전트가 상황에 적합한 서비스를 제공하는데 중요하게 사용될 수 있으며 정확한 위치 추적 및 활용 방안에 대한 활발한 연구가 진행되고 있다. 그 중에서 사용자의 다음 위치를 예측하는 것은 사용자에게 필요한 서비스를 명시적인 요청없이 미리 제공하는데 유용하게 쓰일 수 있다. 본 논문에서는 GPS신호를 이용하여 사용자의 위치 이동경로를 학습하고 사용자의 이동에 기반한 서비스 제공 방법을 제안한다. GPS에 의해 관측된 위치 이동경로는 시간 순서의 데이터에 적합하도록 SOM을 변형한 RSOM과 마르코프 모델을 이용하여 학습되며, 새로 관측된 사용자 위치 데이터에 대해 다음 이동 패턴을 예측하는 기능을 가진다. 실제 캠퍼스에서 수집된 데이터를 이용하여 제안한 방법의 가능성을 평가한다.

  • PDF

A MapReduce-Based Distributed Data Mining Approach to Next Place Prediction for Mobile Users (이동 사용자의 다음 장소 예측을 위한 맵리듀스 기반의 분산 데이터 마이닝)

  • Kim, Jong-Hwan;Lee, Seok-Jun;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.777-780
    • /
    • 2014
  • 본 논문에서는 휴대용 기기 사용자들의 이동 궤적을 기록한 대용량의 GPS 위치 데이터 집합으로부터 각 사용자의 이동 패턴 모델을 학습해내고, 이 모델을 적용하여 각 사용자의 다음 방문 장소를 효율적으로 예측할 수 있는 맵리듀스 기반의 분산 데이터 마이닝 시스템을 소개한다. 본 시스템은 크게 사용자별 이동 패턴 모델을 학습하는 후단부와 실시간으로 다음 방문 장소를 예측하는 전단부로 구성된다. 이 중에서 후단부는 주요 장소 추출, 이동 궤적 변환, 이동 패턴 모델 학습 등 총 3개의 맵리듀스 작업 모듈들로 구성된다. 이에 반해, 본 시스템의 전단부는 이동 경로 후보군 생성, 다음 장소 예측 등 총 2개의 맵리듀스 작업 모듈들로 구성된다. 그리고 본 시스템을 구성하는 각각의 작어마다 분산처리를 극대화할 수 있도록 맵과 리듀스 함수를 설계하였다. 끝으로, 대용량의 GeoLife 벤치마크 데이터 집합을 이용하여 본 논문에서 소개한 시스템의 예측 성능을 분석하기 위한 실험을 수행하였고, 이를 통해 본 시스템의 높은 성능을 확인할 수 있었다.

Prefetching Methods of User's Moving Pattern with Spacial and Temporal Locality in Mobile Information Service Environment (이동 정보 서비스 환경에서 공간.시간 지역성을 가진 사용자의 이동 패턴을 고려한 프리페칭)

  • Choi, In-Seon;Kim, Hyung-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.433-436
    • /
    • 2011
  • 사용자의 이동성으로 인하여 이동 정보서비스 환경에서 안정된 서비스 품질(QoS)로 사용자가 원하는 정보를 제공받는데 많은 한계점이 있다. 이동성과 더불어 무선 네트워크의 낮은 대역폭, 높은 전송지연 등의 고유 특성을 부분적으로 보완하기 위해서 유효 데이터의 캐쉬 혹은 프리페칭 기법의 적용이 심도 있게 연구되고 있다. 본 논문은 공간지역성과 시간지역성을 가진 사용자의 이동패턴을 고려한 프리페칭기법을 제안한다. 제안한 프리페칭기법은 사용자의 특정 영역의 방문 빈도수와 일정 시간 이상 머물러 있었던 정도에 따라 정보의 중요도가 높은 것으로 판단하여 이를 적용함으로써 프리페칭의 유효성을 높이는 기초를 제공한다.

  • PDF

Location Area List Generation for Profile Based Location Management in Cellular Networks (셀룰러 망에서 프로파일 기반 위치관리를 위한 위치영역 리스트 생성)

  • Cho, Hyunjoon
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.6
    • /
    • pp.123-132
    • /
    • 2005
  • There are many research results for the location update cost minimization of location management in cellular networks. For minimizing the location update cost, we have to take in consideration of each users' mobility pattern. This paper suggests location area list generation and a 3-step paging method based on users' movement history with the users' profiles. Users' mobility has not only geographical regular patterns but also time-related regularity. So, the method extracts users' movement regularities in both geography and time from their movement history, and generate location area list considering the regularities. For the performance analysis of the suggested method, we have executed a simulation for suggested method with user's mobility model. The results of the simulation show that suggested algorithm has some merits in the location management cost.

  • PDF

User Location Prediction Within a Building Using Search Tree (탐색 트리를 이용한 건물 내 사용자의 위치 예측 방법)

  • Oh, Se-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.585-588
    • /
    • 2010
  • The prediction of user location within a building can be applied to many areas like visitor guiding. The existing methods for solving this problem consider limited number of locations a user visited in the past to predict the current location. It cannot model the complex movement patterns, and makes the system inefficient by modeling simple ones too detail. Also it causes prediction errors. In this paper, there is no restriction on the length of past movement patterns to consider for current location prediction. For this purpose, a modified search tree is used. The search tree is constructed to make exact matching as needed for location prediction. The search tree makes the efficient and accurate prediction possible.

  • PDF

Intelligent Mobility Prediction using Neuro-Fuzzy Inference Systems in Mobile Computing Systems (이동 컴퓨팅 시스템에서 뉴로-퍼지 추론 시스템을 이용한 지능적 이동성 예측)

  • Gil, Jun-Min;Park, Chan-Yeol;Yang, Gwon-U;Han, Yeon-Hui;Hwang, Jong-Seon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.4
    • /
    • pp.472-487
    • /
    • 1999
  • 본 논문에서는 효율적인 이동성 관리를 위한 이동성 예측 기법을 소개한다. 이동 컴퓨팅 환경에서는 사용자가 지리적 위치의 제약없이 언제, 어디서나 다른 네트워크 시스템과 메시지를 주고 받을수 있다. 그러나, 통신자원의 부족, 잦은 접속단절 , 사용자의 움직임 등과같은 이동 컴퓨팅 시스템의 특징 때문에, 지능적이고 효율적인 이동성관리가 요구된다. 이동 컴퓨팅 시스템이 지능적이고 효율적인 이동성관리를 통하여 높은 질의 서비스를 제공하기 위해서는 이동 사용자의 움직임 패턴들을 능동적으로 고려하는 것이 바람직하다. 본 논문에서는 이동 사용자의 과거수일, 수개월동안의 움직임 패턴 즉, 이동사용자의 위치연혁으로부터 미래 위치를 예측하는 지능적 이동성 예측기법(intelligent mobility prediction scheme)을 제안한다. 모델링 방법으로서 뉴로-퍼지 추론시스템(neuro-fuzzy inference system)을 이용한다. 뉴로-퍼지 추론 시스템이 이동 사용자가 움직이게 되는 미래 위치를 예측하기 때문에 , 본 논문에서의 이동성 예측 기법은 통신채널의 사전 배당, 부족한 자원의 사전 할당등을 위해서 사용될 수 있다. 게다가, 본 논문의 시뮬레이션 결과는 제안하는 기법이 다양한 이동 환경에 대해서 높은 예측 정확도를 갖음을 보여준다.

Evaluation Of Improved Usage Profiles Using Frequency Support Threshold In Clusters (클러스터 내부 빈발 지지도를 이용한 개선된 사용 프로파일 평가)

  • 안계순;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.277-279
    • /
    • 2002
  • 웹 로그 기반의 웹 사용 마이닝은 명시적 평가 의존, 확장성 결여, 그리고 다차원 및 희박한 데이터에 성능이 떨어지는 협력적 여과의 문제를 다소 해결할 수 있다. 그러나 k-Means 군집화 방법으로 생성된 군집속 유사 사용자 이동 패턴으로는 클러스터속 사용자 전체의 선호도를 표현할 수 없으므로 사용자 이동 패턴인 트랜잭션들로부터 사용 프로파일을 유도해야 한다. 본 논문에서는 유사 군집 사용자들의 관심과 기호를 표현할 수 있도록 클러스터 내부 데이타로부터 평균 가중치 및 빈발 지지도 임계값을 사용하여 개선된 사용 프로파일을 생성하고 실험 데이터를 통한 예측력과 추천에 대한 성능을 평가한다.

  • PDF

Extraction of Optimal Moving Pattern using Maximum Frequent 2-Sequence (최대 빈발 2-시퀀스를 이용한 최적 이동 패턴 추출)

  • Lee, Yon-Sik;Ko, Hyun;Kim, Kwang-Jong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06d
    • /
    • pp.367-372
    • /
    • 2008
  • 최근 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 개발하기 위한 목적으로 이동 객체의 다양한 패턴들 중 의미있는 지식인 유용한 이동 패턴을 탐사하는 문제가 주요 이슈로 부각되고 있다. 이에 본 논문에서는 방대한 이동 객체의 이력 데이터 집합으로부터 특정 지점들 간의 최적 이동 경로나 정해진 시간내의 스케줄링 경로 탐색과 같이 복합적인 시간 및 공간 제약을 갖는 최적 이동 패턴을 탐사하는 문제에 대해 정의하고, 다양한 이동 패턴들 중 가장 빈발하게 발생하는 패턴이 최적의 비용을 소요할 것이라는 가정을 기반으로 최대 빈발 2-시퀀스를 추출하는 방법을 제안한다. 후보 시퀀스 집합으로부터 지지도 계산을 통해 추출되는 빈발 2-시퀀스들의 순차적인 조합은 패턴 탐사를 수행하는 각 패스 진행 시 후보 시퀀스 항목의 차수가 점차 감소하여 최적 이동 패턴 탐사 방법에 효과적으로 적용된다.

  • PDF