This paper describes a novel and efficient algorithm, which extracts focused objects from still images with low depth-of-field (DOF). The algorithm unfolds into four modules. In the first module, a HOS map, in which the spatial distribution of the high-frequency components is represented, is obtained from an input low DOF image [1]. The second module finds OOI candidate by using characteristics of the HOS. Since it is possible to contain some holes in the region, the third module detects and fills them. In order to obtain an OOI, the last module gets rid of background pixels in the OOI candidate. The experimental results show that the proposed method is highly useful in various applications, such as image indexing for content-based retrieval from huge amounts of image database, image analysis for digital cameras, and video analysis for virtual reality, immersive video system, photo-realistic video scene generation and video indexing system.
Journal of the Korean Society for information Management
/
v.29
no.4
/
pp.123-142
/
2012
To develop an intelligent search engine to help users retrieve information effectively, various methods, such as Semantic Web, have been used, An effective retrieval method of such methods uses ontology technology. In this paper, we built National R&D ontology after analyzing National R&D Information in NTIS and then implemented National R&D Knowledge Map to represent and retrieve information of the relationship between object and subject (project, human information, organization, research result) in R&D Ontology. In the National R&D Knowledge Map, center-node is the object selected by users, node is subject, subject's sub-node is user's favorite query in National R&D ontology after analyzing the relationship between object and subject. When a user selects sub-node, the system displays the results from inference engine after making query by SPARQL in National R&D ontology.
Journal of the Korea Institute of Information and Communication Engineering
/
v.16
no.4
/
pp.752-758
/
2012
SNS(Social Networking Services) is oneline service that enable users to construct human network through their relation on web, such as following relation, friend relation, and etc. Recently, owing to the advent of digital devices (smart phone, tablet PC) which embedded GPS some applications which provide services with spatial relevance and social relevance have been released. Such an online service is called LBSNS. It is required to use spatial filtering so as to build the LBSNS system that enable users to subscribe information of interesting area. For spatial filtering, user and tweet attaches location information which divide into static property presenting fixed area and dynamic property presenting user's area changed along the moving user. In the case of using a location information including dynamic property, Continuous query occurred from the moving user causes the problem in server. In this paper, we propose spatial filtering algorithm using Virtual Grid for reducing frequency of query, and conclude that frequency of query on using Virtual Grid is 93% decreased than frequency of query on not using Virtual Grid.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.10C
/
pp.990-999
/
2007
In this paper, we propose the region-based image retrieval method using JSEG which is a method for unsupervised segmentation of color-texture regions. JSEG is an algorithm that discretizes an image by color classification, makes the J-image by applying a region to window mask, and then segments the image by using a region growing and merging. The segmented image from JSEG is given to a user as the query image, and a user can select a few segmented regions as the query region. After finding the MBR of regions selected by user query and generating the multiple window masks based on the center point of MBR, we extract the feature vectors from selected regions. We use the accumulated histogram as the global descriptor for performance comparison of extracted feature vectors in each method. Our approach fast and accurately supplies the relevant images for the given query, as the feature vectors extracted from specific regions and global regions are simultaneously applied to image retrieval. Experimental evidence suggests that our algorithm outperforms the recent image-based methods for image indexing and retrieval.
The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.5
/
pp.851-856
/
2015
As crime has actually increased in recent years, various mobile applications related to safety and emergency measure have received much attention. Therefore, IoT (Internet of Things) technologies, which connect various physical objects with Internet communication, have been also paid attention and then diverse safety services based on IoT technologies have been on the increase. However, existing mobile safety applications are simply based on location based service (LBS). Also, as they are independently operated without the help of another safety systems, they cannot efficiently cope with various safety situations. So, this paper proposes the efficient smart safety service architecture with both the risky situation detection using user location as well as various sensing information and the risk congruence measure using the streetlight infrastructure. Additionally, UDID (unique device identifier) is utilized for the secure communication with the control center.
Min-Ah Lim;Seung-Yeon Hwang;Dong-Jin Shin;Jae-Kon Oh;Jeong-Joon Kim
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.3
/
pp.193-198
/
2023
We study a learner-customized lecture recommendation project using deep learning. Recommendation systems can be easily found on the web and apps, and examples using this feature include recommending feature videos by clicking users and advertising items in areas of interest to users on SNS. In this study, the sentence similarity Word2Vec was mainly used to filter twice, and the course was recommended through the Surprise library. With this system, it provides users with the desired classification of course data conveniently and conveniently. Surprise Library is a Python scikit-learn-based library that is conveniently used in recommendation systems. By analyzing the data, the system is implemented at a high speed, and deeper learning is used to implement more precise results through course steps. When a user enters a keyword of interest, similarity between the keyword and the course title is executed, and similarity with the extracted video data and voice text is executed, and the highest ranking video data is recommended through the Surprise Library.
The recent progress in multimedia signal processing and transmission technologies has contributed to the extensive use of multimedia devices to watch sports games with small LCD panel. However, the most of video sequences are captured for normal viewing on standard TV or HDTV, for cost reasons, merely resized and delivered without additional editing. This may give the small-display-viewers uncomfortable experiences in understanding what is happening in a scene. For instance, in a soccer video sequence taken by a long-shot camera techniques, the tiny objects (e.g., soccer ball and players) may not be clearly viewed on the small LCD panel. Moreover, it is also difficult to recognize the contents of the scorebox which contains the elapsed time and scores. This renuires intelligent display technique to provide small-display-viewers with better experience. To this end, one of the key technologies is to determine region of interest (ROI) and display the magnified ROI on the screen, where ROI is a part of the scene that viewers pay more attention to than other regions. Examples include a region surrounding a ball in long-shot and a scorebox located in the comer of each frame. In this paper, we propose a scheme for raising viewing experiences of multimedia mobile device users. Instead of taking generic approaches utilizing visually salient features for extraction of ROI in a scene, we take domain-specific approach to exploit unique attributes of the soccer video. The proposed scheme consists of two modules: ROI determination and scorebox extraction. The experimental results show that the proposed scheme offers useful tools for intelligent video display on multimedia mobile devices.
Proceedings of the Korean Information Science Society Conference
/
2005.11a
/
pp.1024-1026
/
2005
P2P 네트워크는 사용자에게 보다 효율적으로 않은 자원을 공유하고 사용할 수 있는 방법을 제공해야 한다. 이 논문에서는 Ultrapeer와 동일한 관심을 갖는 peer들을 서로 그룹화 함으로써 검색에 필요한 query의 수를 줄이는 방법을 제안한다. 이 방법을 검증하기 위해 세가지 P2P 네트워크-비구조적이며 브로드케스팅으로 검색하는 네트워크, ultrapeer가 존재하며 지역적 특성을 그룹화 기준으로 하는 네트워크, ultrapeer가 존재하며 동일한 관심을 그룹의 기준으로 하는 네트워크로 모델링 하고 각 모델별로 필요한 데이터의 검색과 전송을 시뮬레이션하여 검색 시간과 발생한 query의 수를 비교하여 제시한다.
최근 급격하게 확산되고 있는 핀테크 서비스는 다양한 분야의 사람들로부터 관심을 받고 있다. 기존 금융거래 프로세스에서 경험했던 불편함과 비효율을 개선하여 소비자와 기업 모두에게 편리성과 비용절감이라는 혜택을 제공하고, 새롭게 재편되고 있는 금융 산업에 참여할 기회를 제공하기 때문이다. 그러나 핀테크 서비스가 가져다 줄 혜택과 기회는 완벽한 보안에 기반하지 않으면 엄청난 피해를 야기할 수 있다는 우려도 존재한다. 본고에서는 핀테크 보안 기술 중 최근 급격히 관심을 받고 있는 FIDO (Fast IDentity Online) 인증 기술에 대해 살펴보고자 한다. 편의성과 보안성 측면에서 한계를 갖고 있던 기존 인증 기술들이 핀테크 서비스를 확산시키는데 장애가 되었다면, 최근 도입되기 시작한 FIDO 기술은 편리하고 강력한 인증을 제공하여 사용자와 기업 모두의 관심을 얻는데 성공하고 있는 것으로 보인다. 본 고에서는 FIDO 기술을 간단히 설명하고, FIDO 기술을 활용한 응용 보안 기술을 소개하고자 한다. 또한 FIDO 기술의 향후 발전 방향에 대해 현재 진행 중인 표준화 내용을 중심으로 살펴보고, 해외에서 활발히 진행되고 있는 연구들을 통해 핀테크 인증 기술의 발전 방향을 전망하고 결론을 맺는다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.769-771
/
2004
요즘 Web-Browsing, 영상 데이터 베이스 그리고 원격 진료와 같은 여러 응용 분야에서는 압축할 이미지내의 사용자의 관심 영역을 다른 영역보다 더 우선적으로 처리할 필요가 있다. 즉, 영상을 전송하는데 있어서 관심영역(ROI : Region Of Interest)을 먼저 전송하고, 영상 복원 시에도 영상의 전체 영역 중 ROI 영역이 우선적으로 복원하여야 하는 경우가 있다. Maxshift 방법은 JPEG2000 ROI Coding 에서 표준으로 사용하고 있다. 그러나 Maxshift 방법은 단지 하나의 ROI 영역만을 처리 가능하다. 본 논문에서는 기존의 방법을 이용하여 우선 순위를 가지는 Multiple ROI Coding 기법을 제안한다. 제안한 방법에서는 계수값들의 비트 플레인에 대한 스케일링 변수를 이용하여 우선 순위를 가지는 Multiple ROI 부호화가 가능함을 보이고, 저 비트율에서 Maxshift 방법보다 좀 더 우수한 성능을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.